Skip to main content

Advertisement

Log in

Dislocation–grain boundary interactions in Ta: numerical, molecular dynamics, and machine learning approaches

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The motivation of this work was to find the appropriate molecular dynamics (MD) and slip transmission parameters of dislocation–grain boundary (GB) interaction in tantalum that correlate with the stress required for the grain boundary to deform. GBs were modeled using [\(\overline{1}\)\(\overline{1}\)2], [\(\overline{1}\)10], and [111] as rotation axes and rotation angle between 0° and 90°. Dislocation on either \(\left\{110\right\}\) or \(\left\{112\right\}\) slip planes was simulated to interact with various GB configurations. Drop in shear stress, drop in potential energy, critical distance between dislocation and GB, and critical shear stress for dislocation absorption by the GB were the parameters calculated from MD simulations of dislocation–GB interactions. Machine learning models eXtreme Gradient Boosting and SHapley Additive exPlanations (SHAP) were used to find the correlation between the various parameters and yield stress of the GB configurations. Machine learning results showed that the MD parameters—critical distance between the dislocation and GB, drop in shear stress; and slip transmission parameter—\({m}^{\prime}\) have a stronger correlation with yield stress. The SHAP results sorted the prominent slip plane and rotation axis affecting the yield stress. The configurations with dislocation on \(\left\{112\right\}\) slip plane, and configurations with [111] rotation axis were difficult to deform (higher yield stress of GB) than \(\left\{110\right\}\) slip plane and [\(\overline{1}\)\(\overline{1}\)2] and [\(\overline{1}\)10] rotation axes configurations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hansen N (2004) Hall-petch relation and boundary strengthening. Scr Mater 51:801–806. https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  CAS  Google Scholar 

  2. Patriarca L, Abuzaid W, Sehitoglu H, Maier HJ (2013) Slip transmission in bcc FeCr polycrystal. Mater Sci Eng A 588:308–317. https://doi.org/10.1016/j.msea.2013.08.050

    Article  CAS  Google Scholar 

  3. Guo Y, Britton TB, Wilkinson AJ (2014) Slip band-grain boundary interactions in commercial-purity titanium. Acta Mater 76:1–12. https://doi.org/10.1016/j.actamat.2014.05.015

    Article  CAS  Google Scholar 

  4. Bieler TR, Eisenlohr P, Zhang C, Phukan HJ, Crimp MA (2014) Grain boundaries and interfaces in slip transfer. Curr Opin Solid State Mater Sci 18:212–226. https://doi.org/10.1016/j.cossms.2014.05.003

    Article  CAS  Google Scholar 

  5. Weaver JS, Li N, Mara NA, Jones DR, Cho H, Bronkhorst CA, Fensin SJ, Gray GT (2018) Slip transmission of high angle grain boundaries in body-centered cubic metals: micropillar compression of pure Ta single and bi-crystals. Acta Mater 156:356–368. https://doi.org/10.1016/j.actamat.2018.06.046

    Article  CAS  Google Scholar 

  6. Kondo S, Mitsuma T, Shibata N, Ikuhara Y (2016) Direct observation of individual dislocation interaction processes with grain boundaries, Science. Advances 2:1–8. https://doi.org/10.1126/sciadv.1501926

    Article  CAS  Google Scholar 

  7. Shen Z, Wagoner RH, Clark WAT (1988) Dislocation and grain boundary interactions in metals. Acta Metall 36:3231–3242. https://doi.org/10.1016/0001-6160(88)90058-2

    Article  CAS  Google Scholar 

  8. De Koning M, Kurtz RJ, Bulatov VV, Henager CH, Hoagland RG, Cai W, Nomura M (2003) Modeling of dislocation-grain boundary interactions in FCC metals. J Nucl Mater 323:281–289. https://doi.org/10.1016/j.jnucmat.2003.08.008

    Article  CAS  Google Scholar 

  9. Shimokawa T, Kinari T, Shintaku S (2007) Interaction mechanism between edge dislocations and asymmetrical tilt grain boundaries investigated via quasicontinuum simulations. Phys Rev B 75:1–11. https://doi.org/10.1103/PhysRevB.75.144108

    Article  CAS  Google Scholar 

  10. Yu W, Wang Z (2012) Interactions between edge lattice dislocations and Σ11 symmetrical tilt grain boundaries in copper: a quasi-continuum method study. Acta Mater 60:5010–5021. https://doi.org/10.1016/j.actamat.2012.06.037

    Article  CAS  Google Scholar 

  11. Wang J (2015) Atomistic simulations of dislocation pileup: grain boundaries interaction. Jom 67:1515–1525. https://doi.org/10.1007/s11837-015-1454-0

    Article  CAS  Google Scholar 

  12. Liang Y, Yang X, Gong M, Liu G, Liu Q, Wang J (2019) Interactions between dislocations and three-dimensional annealing twins in face centered cubic metals. Comput Mater Sci 161:371–378. https://doi.org/10.1016/j.commatsci.2019.02.024

    Article  CAS  Google Scholar 

  13. Chandra S, Samal MK, Chavan VM, Patel RJ (2015) Atomistic simulations of interaction of edge dislocation with twist grain boundaries in Al-effect of temperature and boundary misorientation. Mater Sci Eng A 646:25–32. https://doi.org/10.1016/j.msea.2015.08.049

    Article  CAS  Google Scholar 

  14. Kacher J, Eftink BP, Cui B, Robertson IM (2014) Dislocation interactions with grain boundaries. Curr Opin Solid State Mater Sci 18:227–243. https://doi.org/10.1016/j.cossms.2014.05.004

    Article  CAS  Google Scholar 

  15. Kacher J, Robertson IM (2014) In situ and tomographic analysis of dislocation/grain boundary interactions in titanium. Philos Mag 94:814–829. https://doi.org/10.1080/14786435.2013.868942

    Article  CAS  Google Scholar 

  16. Hansen LT, Fullwood DT, Homer ER, Wagoner RH, Lim H, Carroll JD, Zhou G, Bong HJ (2020) An investigation of geometrically necessary dislocations and back stress in large grained tantalum via EBSD and CPFEM. Mater Sci Eng, A 772:138704. https://doi.org/10.1016/j.msea.2019.138704

    Article  CAS  Google Scholar 

  17. Bayerschen E, McBride AT, Reddy BD, Böhlke T (2016) Review on slip transmission criteria in experiments and crystal plasticity models. J Mater Sci 51:2243–2258. https://doi.org/10.1007/s10853-015-9553-4

    Article  CAS  Google Scholar 

  18. Ren Y, Huang Z, Wang Y, Zhou Q, Yang T, Li Q, Jia Q, Wang H (2023) Friction-induced rapid amorphization in a wear-resistant (CoCrNi)88Mo12 dual-phase medium-entropy alloy at cryogenic temperature. Compos B Eng 263:110833. https://doi.org/10.1016/j.compositesb.2023.110833

    Article  CAS  Google Scholar 

  19. Mortazavi B, Silani M, Podryabinkin EV, Rabczuk T, Zhuang X, Shapeev AV (2021) First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials. Adv Mater. https://doi.org/10.1002/adma.202102807

    Article  Google Scholar 

  20. Zhou Q, Luo D, Hua D, Ye W, Li S, Zou Q, Chen Z, Wang H (2022) Design and characterization of metallic glass/graphene multilayer with excellent nanowear properties. Friction 10:1913–1926. https://doi.org/10.1007/s40544-021-0581-6

    Article  CAS  Google Scholar 

  21. Yang C, Yin C, Wu Y, Zhou Q, Liu X (2023) Atomic insights into the deformation mechanism of an amorphous wrapped nanolamellar heterostructure and its effect on self-lubrication. J Market Res 26:4206–4218. https://doi.org/10.1016/j.jmrt.2023.08.215

    Article  CAS  Google Scholar 

  22. Talebi H, Silani M, Bordas SPA, Kerfriden P, Rabczuk T (2014) A computational library for multiscale modeling of material failure. Comput Mech 53:1047–1071. https://doi.org/10.1007/s00466-013-0948-2

    Article  Google Scholar 

  23. Spearot DE, Sangid MD (2014) Insights on slip transmission at grain boundaries from atomistic simulations. Curr Opin Solid State Mater Sci 18:188–195. https://doi.org/10.1016/j.cossms.2014.04.001

    Article  CAS  Google Scholar 

  24. Tsuru T, Shibutani Y, Hirouchi T (2016) A predictive model for transferability of plastic deformation through grain boundaries. AIP Adv. https://doi.org/10.1063/1.4939819

    Article  Google Scholar 

  25. Kapoor R, Verdhan N (2017) Interaction of dislocation pile-up with a low-angle tilt boundary: a discrete dislocation dynamics study. Philos Mag 97:465–488. https://doi.org/10.1080/14786435.2016.1266102

    Article  CAS  Google Scholar 

  26. Kedharnath A, Kapoor R, Sarkar A (2021) Classical molecular dynamics simulations of the deformation of metals under uniaxial monotonic loading: a review. Comput Struct 254:106614. https://doi.org/10.1016/j.compstruc.2021.106614

    Article  Google Scholar 

  27. Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, USA, pp 785–794. https://doi.org/10.1145/2939672.2939785

  28. Lundberg SM, Lee SI (2017) A unified approach to interpreting model predictions. Adv Neural Inf Process Syst 30:4766–4775

    Google Scholar 

  29. Werner E, Prantl W (1990) Slip transfer across grain and phase boundaries. Acta Metall Mater 38:533–537. https://doi.org/10.1016/0956-7151(90)90159-E

    Article  CAS  Google Scholar 

  30. Priester L, Boundaries G (1976). From Theory to Engineering. https://doi.org/10.1017/cbo9781316389508.016

    Article  Google Scholar 

  31. Mercier D, Zambaldi C, Bieler TR (2015) A Matlab toolbox to analyze slip transfer through grain boundaries. IOP Conf Ser Mater Sci Eng 82:11–15. https://doi.org/10.1088/1757-899X/82/1/012090

    Article  CAS  Google Scholar 

  32. Mainprice D, Bachmann F, Hielscher R, Schaeben H (2015) Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components. Geol Soc Spec Pub 409:251–271. https://doi.org/10.1144/SP409.8

    Article  Google Scholar 

  33. Kedharnath A, Kapoor R, Sarkar A (2019) Atomistic simulation of interaction of collision cascade with different types of grain boundaries in α-Fe. J Nucl Mater 523:444–457. https://doi.org/10.1016/j.jnucmat.2019.06.021

    Article  CAS  Google Scholar 

  34. Kedharnath A, Panwar AS, Kapoor R (2017) Molecular dynamics simulation of the interaction of a nano-scale crack with grain boundaries in α-Fe. Comput Mater Sci 137:85–99. https://doi.org/10.1016/j.commatsci.2017.05.026

    Article  CAS  Google Scholar 

  35. Hirel P (2015) Atomsk: a tool for manipulating and converting atomic data files. Comput Phys Commun 197:212–219. https://doi.org/10.1016/j.cpc.2015.07.012

    Article  CAS  Google Scholar 

  36. W.R. Jian, S. Xu, I.J. Beyerlein, On the significance of model design in atomistic calculations of the Peierls stress in Nb, Computational Materials Science. 188 (2021). https://doi.org/10.1016/j.commatsci.2020.110150.

  37. Chen Y, Fang J, Liu L, Hu W, Gao N, Gao F, Deng H (2019) Development of the interatomic potentials for W-Ta system. Comput Mater Sci 163:91–99. https://doi.org/10.1016/j.commatsci.2019.03.021

    Article  CAS  Google Scholar 

  38. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  39. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the open visualization Tool. Modell Simul Mater Sci Eng 18:015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  40. Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790. https://doi.org/10.1016/j.cma.2019.112790

    Article  Google Scholar 

  41. Baton J, Geslin W, Moussa C (2021) Influence of pre-recovery on the recrystallization of pure tantalum. J Mater Sci 56:15354–15378. https://doi.org/10.1007/s10853-021-06218-0

    Article  CAS  Google Scholar 

  42. Kedharnath A, Kapoor R, Sarkar A (2023) Evolution of dislocations and grain boundaries during multi-axial forging of tantalum. Int J Refract Metal Hard Mater 112:106120. https://doi.org/10.1016/j.ijrmhm.2023.106120

    Article  CAS  Google Scholar 

  43. Weinberger CR, Boyce BL, Battaile CC (2013) Slip planes in bcc transition metals. Int Mater Rev 58:296–314. https://doi.org/10.1179/1743280412Y.0000000015

    Article  CAS  Google Scholar 

  44. Pande CS, Masumura RA, Armstrong RW (1993) Pile-up based hall-petch relation for nanoscale materials. Nanostruct Mater 2:323–331. https://doi.org/10.1016/0965-9773(93)90159-9

    Article  CAS  Google Scholar 

  45. John JL, Hirth P (1992) Theory of dislocations, 2nd edn. Krieger Publishing Company, Malabar. https://doi.org/10.1016/0502-8205(49)90004-0

    Book  Google Scholar 

  46. Fressengeas C, Beausir B, Kerisit C, Helbert AL, Baudin T, Brisset F, Mathon MH, Besnard R, Bozzolo N (2018) On the evaluation of dislocation densities in pure tantalum from EBSD orientation data. Mater Techn 10:6. https://doi.org/10.1051/mattech/2018058

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported under the BARC project RBA4012 ‘Development of new generation alloys for nuclear reactor system and joining technologies for ceramics, metals and special materials’.

Author information

Authors and Affiliations

Authors

Contributions

AK contributed to conceptualization, methodology, simulation, data collection, analysis, evaluation, and writing of the original manuscript. RK contributed to supervision, critical discussion, review, and editing of the manuscript. AS contributed to simulation, critical discussion, review, and editing of the manuscript.

Corresponding author

Correspondence to A. Kedharnath.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Ghanshyam Pilania.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 879 kb)

Supplementary file2 (ZIP 107894 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kedharnath, A., Kapoor, R. & Sarkar, A. Dislocation–grain boundary interactions in Ta: numerical, molecular dynamics, and machine learning approaches. J Mater Sci 59, 243–257 (2024). https://doi.org/10.1007/s10853-023-09167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09167-y

Navigation