Skip to main content
Log in

Effects of Nickel on Human and Fish Red Blood Cells

  • Original Paper
  • Published:
Bioscience Reports

Abstract

The objective of this study was to assess the effects of nickel chloride on human and rainbow trout erythrocytes in vitro. The cells were incubated with 0, 0.5 and 1 mM nickel chloride for 1 h at pH 7.40 and 25°C, then K+ efflux, SO 2−4 uptake and GSH and GSSG concentrations were measured. In both kind of cells, “high concentration” nickel treatment increased KCl efflux with respect to the control. The SO 2−4 uptake was not significantly different at “low nickel concentration” but was lower in erythrocytes treated with 1 mM nickel chloride; the rate constant of SO 2−4 uptake decreased by 35% in human erythrocytes and by 44% in fish erythrocytes. Nickel chloride also acts on cellular metabolism and in particular on erythrocyte glutathione peroxidase with consequent increase in oxidative stress; the data show a significant decrease in intracellular GSH in both human (25%) and fish erythrocytes (18%) after treatment with nickel chloride, with concomitantly high GSSG concentrations and lower GSH/GSSG ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bast A et al (1991) Oxidant and antioxidant: state of the art. Am J Med 9:12S–13S

    Google Scholar 

  • Chen CY et al (2002) Nickel-induced plasma lipid peroxidation and effect of antioxidants in human blood: involvement hydroxyl radical formation and depletion of alpha-tocopherol. J Toxicol Environ Healthy A 65(12):843–852

    Article  CAS  Google Scholar 

  • Costagliola C et al (1989) Anemia and chronic renal failure: the possible role of the oxidative state of glutathione. Nephron 52:11–14

    Article  PubMed  CAS  Google Scholar 

  • De Luca G, Gugliotta T, Scuteri A et al (2004) The interaction of haemoglobin, magnesium, organic phosphates and band 3 protein in nucleated and anucleated erythrocytes. Cell Biochem Functt 22(3):179–186

    Article  Google Scholar 

  • Fantone JC, Ward PA (1982) Role of oxygen derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 107:397–418

    CAS  Google Scholar 

  • Fredman JH et al (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605

    Google Scholar 

  • Freeman BA, Crapo JD (1982) Biology disease: free radicals and tissue injury. Lab Invest 47:412–426

    PubMed  CAS  Google Scholar 

  • Frei B (1999) Molecular and biological mechanism of antioxidant action. FASEB J 13:963–964

    PubMed  CAS  Google Scholar 

  • Gey KF (1994) The relationship of antioxidant status and the risk of cancer and cardiovascular disease: a critical evaluation of observational data. In: Nohl H, Esterbauer H, Rice-Evans C (eds) Free radicals in the environment medicine and toxicology. Richelieu Press, London, pp 181–219

    Google Scholar 

  • Grimsrud TK et al (2003) Lung cancer incidence among Norwegian nickel-refinery workers 1953–2000. J Environ Monit 5(2):190–197

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Braughler JM (1989) Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Radic Biol Med 6:303–313

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) The antioxidants of human extracellular fluids. Arch Biochem Biophys 280:1–8

    Article  PubMed  CAS  Google Scholar 

  • Henning SM et al (1991) Glutathion blood levels and other oxidant defense indices in men fed diets low in vitamin C. American institute of nutrition 1969–1975

  • Hogg N, Kalyanaraman B (1999) Nitric oxide and lipid peroxidation. Biochim Biophys Acta 1411:378–384

    Article  PubMed  CAS  Google Scholar 

  • Lange A et al (2002) Alterations of tissue glutathione levels and metallothione in mRNA rainbow trout during single and combined exposure to cadmium and zinc. Biochem Physiol Part C 131:231–243

    Google Scholar 

  • Lepke S et al (1976) A study of the relationship between inhibition of anion exchange and binding to the red cell membrane of 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate (DIDS) and of its dihydroderivative (H2DIDS). J Membr Biol 29:147–177

    Article  PubMed  CAS  Google Scholar 

  • Oberley LW (1988) Free radicals and diabetes. Free Radic Biol Med 5:113–124

    Article  PubMed  CAS  Google Scholar 

  • Pasaoglu H et al (1996) The role of the oxidative state of glutathione and glutathione-related enzymes in anemia of hemodialysis patients. Clin Biochem 6:567–572

    Article  Google Scholar 

  • Peña-Lopis S et al (2001) Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate. Chemosphere 45:671–681

    Article  Google Scholar 

  • Pesarin F (2001) Multivariate permutation test. Wiley, N.Y., pp 37–61

    Google Scholar 

  • Placata H, Bartnikowska E, Obara A (1992) Lipid peroxides in blood from patients with atherosclerosis of coronary and peripheral arteries. Clin chim Acta 211:101–102

    Article  Google Scholar 

  • Romano L, Scuteri A, Gugliotta T et al (2002) Sulphate influx in the erythrocytes of normotensive, diabetic and hypertensive patients. Cell Biol Int 26(5):421–426

    Article  PubMed  CAS  Google Scholar 

  • Rossi R, Milzani A, Dalle-Donne I et al (2002) Blood glutathione disulfide: in vivo factor or in vitro artefact? Clin Chem 48:742–753

    PubMed  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanism in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336

    Article  PubMed  CAS  Google Scholar 

  • Sudha K et al (2001) Oxidative stress and antioxidants in epilepsy. Clin Chim Acta 303:19–24

    Article  PubMed  CAS  Google Scholar 

  • Taddei F et al (2001) Genotoxic hazard of pollutants in cetaceans: DNA damage and repair evaluated in the bottlenose dolphin (Tursiops truncatus) by Comet assay. Mar Pollut Bull 42(4):324–328

    Article  PubMed  CAS  Google Scholar 

  • Teti D, Crupi M, Busà M et al (2005) Chemical and pathological oxidative influences on band 3 protein anion exchange. Cell Physiol Biochem 16:77–86

    Article  PubMed  CAS  Google Scholar 

  • Zhang J et al (2004) Effects of chronic exposure of 2,4- dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55:167–174

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Romano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Luca, G., Gugliotta, T., Parisi, G. et al. Effects of Nickel on Human and Fish Red Blood Cells. Biosci Rep 27, 265–273 (2007). https://doi.org/10.1007/s10540-007-9053-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10540-007-9053-0

Keywords

Navigation