Skip to main content

Advertisement

Log in

A Plasmodium vivax Vaccine Candidate Displays Limited Allele Polymorphism, Which Does Not Restrict Recognition by Antibodies

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The 19 kDa C-terminal region of the merozoite surface protein 1 (MSP119) has been suggested as candidate for part of a subunit vaccine against malaria. A major concern in vaccine development is the polymorphism observed in different plasmodial strains. The present study examined the extension and immunological relevance of the allelic polymorphism of the MSP119 from Plasmodium vivax, a major human malaria parasite.

Materials and Methods

We cloned and sequenced 88 gene fragments representing the MSP119 from 28 Brazilian isolates of P. vivax. Subsequently, we evaluated the reactivity of rabbit polyclonal antibodies, a monoclonal antibody, and a panel of 80 human sera to bacterial and yeast recombinant proteins representing the two allelic forms of P. vivax MSP119 described thus far.

Results

We observed that DNA sequences encoding MSP119 were not as variable as the equivalent region of other species of Plasmodium, being conserved among Brazilian isolates of P. vivax. Also, we found that antibodies are directed mainly to conserved epitopes present in both allelic forms of the protein.

Conclusions

Our findings suggest that the use of MSP119 as part of a subunit vaccine against P. vivax might be greatly facilitated by the limited genetic polymorphism and predominant recognition of conserved epitopes by antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Good MF, Kaslow DC, Miller LH. (1998) Pathways and strategies for developing a malaria blood-stage vaccine. Annu. Rev. Immunol. 16: 57–87.

    Article  CAS  Google Scholar 

  2. Blackman MJ, Heidrich HG, Donachie S, McBride JS, Holder AA. (1990). A single fragment of a malaria merozoite surface protein remains on the parasite during red blood cell invasion and is the target of invasion-inhibiting antibodies. J. Exp. Med. 172: 379–382.

    Article  CAS  Google Scholar 

  3. Pirson PJ, Perkins ME. (1985) Characterization with monoclonal antibodies of a surface antigen of Plasmodium falciparum merozoites. J. Immunol. 134: 1946–1951.

    CAS  PubMed  Google Scholar 

  4. Chappel JA, Holder AA. (1993) Monoclonal antibodies that inhibit Plasmodium falciparum invasion in vitro recognise the first growth factor-like domain of merozoite surface protein-1. Mol. Biochem. Parasitol. 60: 303–312.

    Article  CAS  Google Scholar 

  5. Chang SP, Gibson HL, Lee NC, Barr PJ, Hui GS. (1992) A carboxyl-terminal fragment of Plasmodium falciparum gp 195 expressed by a recombinant baculovirus induces antibodies that completely inhibit parasite growth. J. Immunol. 149: 548–555.

    CAS  PubMed  Google Scholar 

  6. Burns JM, Parke LA, Daly TM, Cavacini LA, Weidanz WP, Long CA. (1989) A protective monoclonal antibody recognizes a variant-specific epitope in the precursor of the major merozoite surface antigen of the rodent malarial parasite Plasmodium yoelii. J. Immunol 142: 2835–2840.

    CAS  PubMed  Google Scholar 

  7. Daly TM, Long CA. (1995) The humoral immune response to a carboxyl-terminal region of the merozoite surface protein-1 plays a predominant role in controlling blood-stage infection in rodent malaria. J. Immunol 155: 236–243.

    CAS  PubMed  Google Scholar 

  8. Daly TM, Long CA. (1993) A recombinant 15-kilodalton carboxyl-terminal fragment of Plasmodium yoelii 17XL merozoite surface protein-1 induces a protective immune response in mice. Infect. Immun. 61: 2462–2467.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ling IT, Ogun SA, Holder AA. (1994) Immunisation against malaria with a recombinant protein. Parasite Immunol. 16: 63–67.

    Article  CAS  Google Scholar 

  10. Kumar S, Yadava A, Keister DB, et al. (1995) Immunogenicity and in vivo efficacy of recombinant Plasmodium falciparum merozoite surface protein-1 in Aotus monkeys. Mol Med. 1: 325–332.

    Article  CAS  Google Scholar 

  11. Tian JH, Kumar S, Kaslow DC, Miller LH. (1997) Comparison of protection induced by immunization with recombinant proteins from different regions of merozoite surface protein 1 of Plasmodium yoelii. Infect. Immun. 65: 3032–3036.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Perera KLRL, Handunnetti SM, Holm I, Longacre S, Mendis K. (1998) Baculovirus merozoite surface protein 1 C-terminal recombinant antigens are highly protective in a natural primate model for human Plasmodium vivax malaria. Infect. Immun. 66: 1500–1506.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang C, Collins WE, Sullivan JS, Kaslow DC, Xiao L, Lal AA. (1999) Partial protection against Plasmodium vivax blood-stage infection in Saimiri monkeys by immunization with a recombinant C-terminal fragment of merozoite surface protein 1 in block copolymer adjuvant. Infect. Immun. 67: 342–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ling IT, Ogun SA, Holder AA. (1995) The combined epidermal growth factor-like modules of Plasmodium yoelii merozoite surface protein-1 are required for a protective immune response to the parasite. Parasite Immunol 17: 425–433.

    Article  CAS  Google Scholar 

  15. Daly TM, Burns JM, Long CA. (1992) Comparison of the carboxy-terminal, cysteine-rich domain of the merozoite surface protein-1 from several strains of Plasmodium yoelii. Mol. Biochem. Parasitol 52: 279–282.

    Article  CAS  Google Scholar 

  16. Rénia L, Ling IT, Marussig M, Miltgen F, Holder AA, Mazier D. (1997) Immunization with a recombinant C-terminal fragment of Plasmodium yoelii merozoite surface protein 1 protects mice against homologous but not heterologous P. yoelii sporozoite challenge. Infect. Immun. 65: 4419–4423.

    PubMed  PubMed Central  Google Scholar 

  17. Tanabe K, MacKay M, Goman M, Scaife JG. (1987) Allelic dimorphism of a surface antigen gene of the malaria parasite. J. Mol. Biol. 134: 1946–1951.

    Google Scholar 

  18. Miller LH, Roberts T, Shahabuddin M, McCutchan T. (1993) Analysis of the sequence diversity in the Plasmodium falciparum merozoite surface protein-1. Mol Biochem. Parasitol. 59: 1–14.

    Article  CAS  Google Scholar 

  19. Qari SH, Shi YP, Goldman IF, Nahlen BL, Tibayrenc M, Lal AA. (1998) Predicted and observed alleles of Plasmodium falciparum merozoite surface protein-1 (MSP-1), a potential malaria vaccine antigen. Mol. Biochem. Parasitol. 92: 241–252.

    Article  CAS  Google Scholar 

  20. Wilson CF, Anand R, Clark JT, McBride JS. (1987) Topography of epitopes on a polymorphic antigen of Plasmodium falciparum determined by the binding of monoclonal antibodies in a two-site radioimmunoassay. Parasite Immunol 9: 737–746.

    Article  CAS  Google Scholar 

  21. McBride JS, Heidrich HG. (1987) Fragments of the polymorphic Mr 185,000 glycoprotein from the surface of isolated Plasmodium falciparum merozoites form antigenic complex. Mol. Biochem. Parasitol. 23: 71–84.

    Article  CAS  Google Scholar 

  22. Cooper JA, Cooper LT, Saul AJ. (1992) Mapping of the region predominantly recognized by antibodies to Plasmodium falciparum surface antigen MSA 1. Mol. Biochem. Parasitol. 51: 301–312.

    Article  CAS  Google Scholar 

  23. Udhayakumar V, Anyona D, Kariuki S, et al. (1995) Identification of T and B cell epitopes recognized by humans in the C-terminal 42-kDa domain of Plasmodium falciparum merozoite surface protein (MSP)-l. J. Immunol. 154: 6022–6030.

    CAS  PubMed  Google Scholar 

  24. Shi YP, Sayed U, Qari SH, et al. (1996) Natural immune response to the C-terminal 19-kilodalton domain of Plasmodium falciparum merozoite surface protein 1. Infect. Immun. 64: 2716–2723.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pasay MC, Cheng Q, Rzepczyk C, Saul A. (1995) Dimorphism of the C terminus of the Plasmodium vivax merozoite surface protein 1. Mol Biochem. Parasitol. 70: 217–219.

    Article  CAS  Google Scholar 

  26. Soares IS, Levitus G, Souza JM, del Portillo HA, Rodrigues MM. (1997) Acquired immune responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1 in individuals exposed to malaria. Infect. Immun. 65: 1606–1614.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Soares IS, Cunha MG, Silva MN, Souza JM, del Portillo HA, Rodrigues MM. (1999) Longevity of the naturally acquired antibody responses to the N- and C-terminal regions of Plasmodium vivax MSP1. Am. J. Trop. Med. Hyg. 60: 357–363.

    Article  CAS  Google Scholar 

  28. Fraser T, Michon P, Barnwell JW, et al. (1997) Expression and serologic activity of a soluble recombinant Plasmodium vivax Duffy binding protein. Infect. Immun. 65: 2772–2777.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Longacre S, Mendis KN, David P. (1994) Plasmodium vivax merozoite surface protein 1 recombinant proteins in baculovirus. Mol Biochem. Parasitol. 64: 191–205.

    Article  CAS  Google Scholar 

  30. Holm I, Nato F, Mendis KN, Longacre S. (1997) Characterization of the C-terminal merozoite surface protein 1 baculovirus recombinant proteins from Plasmodium vivax and Plasmodium cynomolgi as recognized by natural anti-parasite immune response. Mol. Biochem. Parasitol. 89: 313–319.

    Article  CAS  Google Scholar 

  31. Barnwell JW, Galinski MR, DeSimone SG, Perler F, Ingravallo P. (1999) Plasmodium vivax, P. cynomolgi, P. knowlesi: identification of homologue proteins associated with the surface of merozoites. Exp. Parasitol. 91: 238–249.

    Article  CAS  Google Scholar 

  32. del Portillo HA, Parrillo LB, Camargo AA, Levitt A. (1993) Amplification of single-copy genes of Plasmodium vivax from two drops of peripheral blood of infected patients. J. Protozool. Res. 3: 20–24.

    Google Scholar 

  33. Porto M, Ferreira MU, Camargo LMA, Premawansa S, del Portillo HA. (1992) Second form in a segment of the merozoite surface protein 1 gene of Plasmodium vivax among isolates from Rondônia (Brazil). Mol. Biochem. Parasitol. 54:121–124.

    Article  CAS  Google Scholar 

  34. Mitchell DA, Marshall TK, Deschenes RI. (1993) Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9: 715–723.

    Article  CAS  Google Scholar 

  35. Devey ME, Bleasdale K, Lee S, Rath S. (1988) Determination of the functional affinity of IgG1 and IgG4 antibodies to tetanus toxoid by isotype-specific solid-phase assays. J. Immunol. Methods 106: 119–125.

    Article  CAS  Google Scholar 

  36. Camargo LMA, Dal Colletto GMD, Ferreira MU, et al. (1996) Hypoendemic malaria in Rondonia (Brazil, western Amazon region): seasonal variation and risk groups in an urban locality. Am. J. Trop. Med. Hyg. 55: 32–38.

    Article  CAS  Google Scholar 

  37. del Portillo HA, Longacre S, Khouri E, David P. (1991) Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proc. Natl. Acad. Sci. U.SA. 88: 4030–4034.

    Article  Google Scholar 

  38. Gibson HL, Tucker JE, Kaslow DC, et al. (1992) Structure and expression of the gene for Pv200, a major blood-stage surface antigen of Plasmodium vivax. Mol. Biochem. Parasitol. 50: 325–334.

    Article  CAS  Google Scholar 

  39. Kirchgatter K, del Portillo HA. (1998) Molecular analysis of Plasmodium vivax relapses using the MSP1 molecule as a genetic marker. J. Infect. Dis. 177: 511–515.

    Article  CAS  Google Scholar 

  40. Egan AF, Chappel JA, Burghaus PA, et al. (1995) Serum antibodies from malaria-exposed people recognize conserved epitopes formed by the two epidermal growth factor motifs of MSP119, the carboxy-terminal fragment of the major merozoite surface protein of Plasmodium falciparum. Infect. Immun. 63: 456–466.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaslow DC, Hui G, Kumar S. (1994) Expression and antigenicity of Plasmodium falciparum merozoite surface protein 1 (MSP19) variants in Saccharomyces cerevisiae. Mol. Biochem. Parasitol. 63: 283–289.

    Article  CAS  Google Scholar 

  42. Hui GSN, Nikaido C, Hashiro C, Kaslow DC, Collins WE. (1996) Dominance of conserved B-cell epitopes of the Plasmodium falciparum merozoite surface protein, MSP1, in blood-stage infections of naive Aotus monkeys. Infect. Immun. 64: 1502–1509.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Koup R. (1994) Virus escape from CTL. J. Exp. Med. 180: 779–782.

    Article  CAS  Google Scholar 

  44. Couillin I, Culman-Penciolelli B, Gomard E, Levy J-P, Guillet J-G, Saragosti S. (1994) Impaired CTL recognition due to genetic variations in the main immunogenic region of HTV-1 nef protein. J. Exp. Med. 180: 1129–1134.

    Article  CAS  Google Scholar 

  45. de Campos Lima P-O, Levistky V, Brooks J, et al. (1994) T cell response and virus evolution: loss of HLA-A11-restricted CTL epitopes in Epstein-Barr virus isolates from highly All-positive populations by selective mutations at the anchor sequence. J. Exp. Med. 179: 1297–1305.

    Article  Google Scholar 

  46. Udhayakumar V, Ongecha JM, Shi YP, et al. (1997) Cytotoxic T cell reactivity and HLA-B35 binding of the variant Plasmodium falciparum circunsporozoite protein CD8+ CTL epitope in naturally exposed Kenian adults. Eur. J. Immunol. 27: 1952–1957.

    Article  CAS  Google Scholar 

  47. Pircher H, Moskophidis D, Roher U, Burki K, Hengartner H, Zinkernagel DM. (1990) Viral escape by selection of cytotoxic T-cell resistant virus variants in vivo. Nature 34: 629–633.

    Article  Google Scholar 

  48. Bertoletti A, Sette A, Chisari FV, et al. (1993) Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature 364: 158–160.

    Article  Google Scholar 

  49. Gilbert SC, Plebanski M, Gupta S, et al. (1998) Association of malaria parasite, population structure, HLA, and immunological antagonism. Science 279: 1173–1177.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. Hernando Del Portillo, University of São Paulo, for providing the plasmid ICB10. This work was supported by grants from FAPESP, PADCT, CNPq, PRONEX, and FINEP to M.M.R. M.U.F. and M.M.R. are the recipients of fellowships from CNPq. I.S.S. is a post-doctoral fellow of FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio M. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, I.S., Barnwell, J.W., Ferreira, M.U. et al. A Plasmodium vivax Vaccine Candidate Displays Limited Allele Polymorphism, Which Does Not Restrict Recognition by Antibodies. Mol Med 5, 459–470 (1999). https://doi.org/10.1007/BF03403539

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03403539

Navigation