Skip to main content

Advertisement

Log in

Pentoxifylline and Other Protein Kinase C Inhibitors Down-Regulate HIV-LTR NF-κB Induced Gene Expression

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

This investigation deals with the molecular mechanism of anti-human immunodeficiency virus type 1 (HIV-1) action of pentoxifylline (PTX) [1-(5′-oxohexyl)-3,7-dimethylxanthine] a drug widely used for the treatment of conditions involving defective regional microcirculation.

Materials and Methods

The inhibition by PTX of protein kinase C (PKC) or cAMP-dependent protein kinase (PKA)-mediated activation by phorbol ester (PMA) and tumor necrosis factor alpha (TNF-α) of HIV-1-LTR-regulated reporter gene expression was studied in human CD4+ T lymphocytes (Jurkat) and human embryo kidney cells (293-27-2). A protein kinase C is involved in activation of NF-κB in whole cells, identified by using inhibitors specific for PKC- or PKA-catalyzed NF-κB activation in whole cell and cell-free systems.

Results

PTX inhibited PKC- or PKA-catalyzed activation of NF-κB in cytoplasmic extracts from unstimulated Jurkat or 293-27-2 cells, but not interaction of preactivated NF-κB with its motifs. Calphostin C, a specific inhibitor of PKC, inhibited NF-κB activation and HIV-1 LTR-driven reporter gene expression in both PMA- and TNF-α-treated cells. In contrast, although H88 specifically inhibited PKA activity in the cell-free extract, it did not affect NF-κB action in PMA- or TNF-α-treated cells.

Conclusions

The mechanism of inhibitory action of PTX on virus replication and NF-κB-induced trans-activation of HIV-1 gene expression has been elucidated as due to blocking PKC-dependent PMA- or TNF-α-induced activation of NF-κB in Jurkat and 293-27-2 cells. Other protein kinase inhibitors may be useful in down regulating transcription of HIV-1 provirus and thereby virus replication in HIV-infected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vaishnav YN, Wong-Staal F. (1991) The biochemistry of AIDS. Ann. Rev. Biochem. 60: 577–630.

    Article  CAS  Google Scholar 

  2. Fazely F, Dezube BJ, Allen-Ryan J, Pardee AB, Ruprecht RM. (1991) Pentoxifylline (trental) decreases the replication of the human immunodeficiency virus type 1 in Human blood mononuclear cells and in cultured cells. Blood 77: 1653–1656.

    CAS  PubMed  Google Scholar 

  3. Biswas DK, Dezube BJ, Ahlers CM, Pardee AB. (1993) Pentoxifylline inhibits HIV-1 LTR-driven gene expression by blocking NF-κB action. J. Acq. Immun. Def. Synd. 6: 778–786.

    CAS  Google Scholar 

  4. Duh EJ, Maury WJ, Folks TM, Fauci AS, Rabson AB. (1989). Tumor necrosis factor α activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-κB sites in the long terminal repeat. Proc. Natl. Acad. Sci. U.S.A. 86: 5974–5978.

    Article  CAS  Google Scholar 

  5. Osborn L, Kunkel S, Nabel GJ. (1989) Tumor necrosis factor α and interleukin-1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor NF-κB. Proc. Natl. Acad. Sci. U.S.A. 86: 2336–2340.

    Article  CAS  Google Scholar 

  6. Sen R, Baltimore D. (1986) Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranscriptional mechanism. Cell 47: 921–928.

    Article  CAS  Google Scholar 

  7. Baeuerle PA, Baltimore D. (1988) Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-κB transcription factor. Cell 53: 211–217.

    Article  CAS  Google Scholar 

  8. Baeuerle PA, Baltimore D. (1988a) IκB: A specific inhibitor of the NF-κB transcription factor. Science 242: 540–546.

    Article  CAS  Google Scholar 

  9. Shirakawa F, Mizel SB. (1989) In vitro activation and nuclear translocation of NF-κB catalyzed by cyclic AMP-dependent protein kinase and protein kinase C. Mol. Cell. Biol. 9: 2424–2430.

    Article  CAS  Google Scholar 

  10. Visvanathan KV, Goodburn S. (1989) Double-stranded RNA activates binding of NF-κB to an inducer element in the human β-interferon promoter. EMBO J. 8: 1129–1138.

    Article  CAS  Google Scholar 

  11. Cross SL, Feinberg MB, Wolf JB, Holbrook NJ, Wong-Staal F, Leonard WJ. (1987) Regulation of the human interleukin-2 receptor a chain promoter: Activation of a non-functional promoter by the trans-activator gene. Cell 49: 47–56.

    Article  CAS  Google Scholar 

  12. Nabel GJ, and Baltimore D. (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326: 711–713.

    Article  CAS  Google Scholar 

  13. Nabel GJ, Rice SA, Knipe DM, and Baltimore D. (1988) Alternative mechanisms for activation of human immunodeficiency virus enhancer in T cells. Science 239: 1299–1302.

    Article  CAS  Google Scholar 

  14. Chiao PJ, Miyamoto S, Verma IM. (1994) Autoregulation of I kappa B alpha activity. Proc. Natl. Acad. Sci. U.S.A. 91: 28–32.

    Article  CAS  Google Scholar 

  15. Grilli M, Chiu JJ-S, Lenardo MJ. (1993). NF-κB and Rel-participants in a multiform transcriptional regulatory system. Int. Rev. Cytol. 143: 1–62.

    Article  CAS  Google Scholar 

  16. Ghosh S, Baltimore D. (1990) Activation in vitro of NF-κB by phosphorylation of its Inhibitor IκB. Nature 344: 678–682.

    Article  CAS  Google Scholar 

  17. Schutze S, Scheurich P, Schluter C. (1988) Tumor necrosis factor-induced changes of gene expression in U937: Differentiation-dependent plasticity of the responsive state. J. Immunol. 140: 3000–3005.

    CAS  PubMed  Google Scholar 

  18. Jakobovits A, Rosenthal A, Capon DJ. (1990) Trans-activation of HIV-1 LTR-directed gene expression by tat requires protein kinase C. EMBO J. 9: 1165–1170.

    Article  CAS  Google Scholar 

  19. Nishizuka Y. (1984) The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308: 693–698.

    Article  CAS  Google Scholar 

  20. Meichle A, Schütze S, Hensel G, Brunsing D, Krönke M. (1990) Protein kinase C-independent activation of nuclear factor κB by tumor necrosis factor. J. Biol. Chem. 265: 8339–8343.

    CAS  PubMed  Google Scholar 

  21. Hohmann H-P, Remy R, Scheidereit C, van-Loon APG. (1991) Maintenance of NF-κB activity is dependent on protein synthesis and the continuous presence of external stimuli. Mol. Cell. Biol. 11: 259–266.

    Article  CAS  Google Scholar 

  22. Shirakawa F, Cedid M, Suttles J, Pollok BA, Mizel SB. (1989) Interleukin 1 and cyclic AMP induce κ immunoglobulin light-chain expression via activation of an NF-κB-like protein. Mol. Cell. Biol. 9: 959–964.

    Article  CAS  Google Scholar 

  23. Li S, Sedivy JM. (1993) Raf-1 protein kinase activities the NF-κB transcription factor by dissociating the cytoplasmic NF-κB-IκB complex. Proc. Natl. Acad. Sci. U.S.A. 90: 9247–9251.

    Article  CAS  Google Scholar 

  24. Hidaka H, Inagaki M, Kawamoto S, Sasaki Y. (1984) Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase C. Biochemistry 23: 5036–5041.

    Article  CAS  Google Scholar 

  25. Krishnamurthi S, Joseph S. (1989) Arachidonate release in neutrophils: Does a lack of effect of protein kinase C inhibitors imply no involvement of protein kinase C? Biochem. J. 261: 687–688.

    Article  CAS  Google Scholar 

  26. Sha’afi RI. (1989) Some effects of phorbol esters are not mediated by protein kinase C. Biochem. J. 261: 688–690.

    Article  Google Scholar 

  27. Hidaka H, Hagiwara M. (1987) Pharmacology of the isoquinoline sulfonamide protein kinase C inhibitors. TIPS 8: 162–164.

    CAS  Google Scholar 

  28. Kinter AL, Poli G, Maury W, Folks TM, Fauci AS. (1990) Direct and cytokine-mediated activation of protein kinase C induces human immunodeficiency virus expression in chronically infected promonocytic cells. J. Virol. 64: 4306–4312.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hagiwara M, Inagaki M, Hidaka H. (1987) Specific binding of a novel compound, N-[2-(methylamino) ethyl]-5 isoquinolone sulfoneamide (H8) to the active site of cAMP-dependent protein kinase. Mol. Pharmacol. 31: 523–528.

    CAS  PubMed  Google Scholar 

  30. Kischel T, Harbers M, Stabel S, Borowski P, Muller K, Hilz H. (1989) Tumor promotion and depletion of protein kinase C in epidermal JB6 cells. Biochem. Biophys. Res. Commun. 165: 981–987.

    Article  CAS  Google Scholar 

  31. Quick J, Ware JA, Driedger PE. (1992) The structure and biological activities of the widely used protein kinase inhibitor, H7, differ depending on the commercial source. Biochem. Biophys. Res. Commun. 187: 657–663.

    Article  CAS  Google Scholar 

  32. Kobayashi E, Nakano H, Morimoto M, Tamaoki T. (1989) Calphostin C (UCN-1028C): A novel micribial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun. 159: 548–553.

    Article  CAS  Google Scholar 

  33. Iida T, Kobayashi E, Yoshida M, Sano H. (1989) Calphostins, novel and specific inhibitors of protein kinase C. II. Chemical structures. J. Antibio. 42: 1475–1481.

    Article  CAS  Google Scholar 

  34. Bruns RF, Miller FD, Merriman RL, Howbert JJ, Heath WF, Kobayashi E, Takahashi I, Tamaoki T, Nakano H. (1991) Inhibition of protein kinase C by calphostin C is light dependent. Biochem. Biophys. Res. Commun. 176: 288–293.

    Article  CAS  Google Scholar 

  35. Qatsha KA, Rudolph C, Marme D, Schachtele C, May WS. (1993) Gö 6976, a selective inhibitor of protein kinase C, is a potent antagonist of human immunodeficiency virus 1 induction from latent/low-level-producing reservoir cells in vitro. Proc. Natl. Acad. Sci. U.S.A. 90: 4674–4678.

    Article  CAS  Google Scholar 

  36. Herbert JM, Augereau JM, Maffrand J. (1990) Chelerythrine is apotent and specific inhibitor of of protein kinase C. Biochem. Biophys. Res. Commun. 172: 993–999.

    Article  CAS  Google Scholar 

  37. Chijiwa N, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T, Hidaka H. (1990) Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic-dependent protein kinase (N-[2-(p-bromo cinnamylamino) ethyl]-5-isoquonoline). J. Biol. Chem. 265: 5267–5272.

    CAS  PubMed  Google Scholar 

  38. Roederer M, Staal FJT, Raju PA, Ela SW, Herzenberg LA, Herzenberg LA (1990) Cytokine-stimulated human immunodeficiency virus replication is inhibited by N-acetyl-L-Cysteine. Proc. Natl. Acad. Sci. U.S.A. 87: 4884–4888.

    Article  CAS  Google Scholar 

  39. Staal FJT, Roederer M, Herzenberg LA, Herzenberg LA. (1990) Intracellular thiols regulate activation of nuclear factor κB and transcription of human immunodeficienc virus. Proc. Natl. Acad. Sci. U.S.A. 87: 9943–9947.

    Article  CAS  Google Scholar 

  40. Dignam JD, Lebovitz RM, Roeder RD. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucl. Acids Res. 11: 1475–1489.

    Article  CAS  Google Scholar 

  41. Bradford MM. (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Annal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  42. Biswas DK, Ahlers CM, Dezube BJ, Pardee AB. (1993a). Cooperative inhibition of NF-κB and Tat-induced superactivation of human immunodeficiency virus type 1 long terminal repeat. Proc. Natl. Acad. Sci. U.S.A. 90: 11044–11048.

    Article  CAS  Google Scholar 

  43. Kawamoto S, Hidaka H. (1984) 1-(5-Iso-quinolinesulfonyl)-2-methylpiperazine (H7) is a selective inhibitor of protein kinase C in rabbit platelets. Biochem. Biophys. Res. Commun. 125: 258–264.

    Article  CAS  Google Scholar 

  44. Nishikawa M, Uemura Y, Hidaka H, Shirakawa S. (1986) 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), a potent inhibitor of protein kinases, inhibits the differentiation of HL-60 cells induced by phorbol diester. Life Sciences 39: 1101–1107.

    Article  CAS  Google Scholar 

  45. Ratner L, Bandress J. (1993). HIV-1 nef suppresses transcription through NF-κB and AP1 in T cells through protein kinase C-dependent mechanism.Natl. Conf. Hum. Retrovir. Dec. 12–16, Abstract 638, pp. 171.

  46. Diaz-Meco MT, Berra E, Municio MM, Sanz L, Lozano J, Dominguez I Diaz-Golpe V, Lainde-Lera MT, Alcami J, m-Paya CV, Arennzana-Seisdedos A, Virelizier J-L, Moscat J. (1993) A dominant negative protein kinase C by ξ subspecies blocks NF-κB activation. Mol. Cell. Biol. 13: 4770–4775.

    Article  CAS  Google Scholar 

  47. Sompayrac LM, Dana KJ. (1981) Efficient infection of monkey cells with DNA of Simian Virus. Proc. Natl. Acad. Sci. USA 78: 7575–7578.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. L. A. Herzenberg of Standard University for providing the 293-27-2 cells. This research was supported by grants from Hoechst-Roussel Pharmaceuticals Inc., Somerville, NJ, U.S.A., and by a Center for AIDS Research Award to the Dana-Farber Cancer Institute. B.J.D. is a Clinical Oncology Career Development awardee of the American Cancer Society.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, D.K., Ahlers, C.M., Dezube, B.J. et al. Pentoxifylline and Other Protein Kinase C Inhibitors Down-Regulate HIV-LTR NF-κB Induced Gene Expression. Mol Med 1, 31–43 (1994). https://doi.org/10.1007/BF03403529

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03403529

Navigation