Skip to main content

Advertisement

Log in

In Silico Prediction of Peptides Binding to Multiple HLA-DR Molecules Accurately Identifies Immunodominant Epitopes from gp43 of Paracoccidioides brasiliensis Frequently Recognized in Primary Peripheral Blood Mononuclear Cell Responses from Sensitized Individuals

  • Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

One of the major drawbacks limiting the use of synthetic peptide vaccines in genetically distinct populations is the fact that different epitopes are recognized by T cells from individuals displaying distinct major histocompatibility complex molecules. Immunization of mice with peptide (181–195) from the immunodominant 43 kDa glycoprotein of Paracoccidioides brasiliensis (gp43), the causative agent of Paracoccidioidomycosis (PCM), conferred protection against infectious challenge by the fungus. To identify immunodominant and potentially protective human T-cell epitopes in gp43, we used the TEPITOPE algorithm to select peptide sequences that would most likely bind multiple HLA-DR molecules and tested their recognition by T cells from sensitized individuals. The 5 most promiscuous peptides were selected from the gp43 sequence and the actual promiscuity of HLA binding was assessed by direct binding assays to 9 prevalent HLA-DR molecules. Synthetic peptides were tested in proliferation assays with peripheral blood mononuclear cells (PBMC) from PCM patients after chemotherapy and healthy controls. PBMC from 14 of 19 patients recognized at least one of the promiscuous peptides, whereas none of the healthy controls recognized the gp43 promiscuous peptides. Peptide gp43(180–194) was recognized by 53% of patients, whereas the other promiscuous gp43 peptides were recognized by 32% to 47% of patients. The frequency of peptide binding and peptide recognition correlated with the promiscuity of HLA-DR binding, as determined by TEPITOPE analysis. In silico prediction of promiscuous epitopes led to the identification of naturally immunodominant epitopes recognized by PBMC from a significant proportion of a genetically heterogeneous patient population exposed to P. brasiliensis. The combination of several such epitopes may increase the frequency of positive responses and allow the immunization of genetically distinct populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Muller GM, Shapira M, Arnon R. (1982) Anti-influenza response achieved by immunization with a synthetic conjugate. Proc. Natl. Acad. Sci. U.S.A. 79:569–73.

    Article  CAS  PubMed Central  Google Scholar 

  2. Taborda CP, Juliano MA, Puccia R, Franco M, Travassos LR. (1998) Mapping of the T-cell epitope in the major 43-kilodalton glycoprotein of Paracoccidioides brasiliensis which induces a Th-1 response protective against fungal infection in BALB/c mice. Infect. Immun. 66:786–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith DJ, King WF, Barnes LA, Peacock Z, Taubman MA. (2003) Immunogenicity and protective immunity induced by synthetic peptides associated with putative immunodominant regions of Streptococcus mutans glucan-binding protein B. Infect. Immun. 71:1179–84.

    Article  CAS  PubMed Central  Google Scholar 

  4. Southwood S et al. (1998) Several common HLA-DR types share largely overlapping peptide binding repertoires. J. Immunol. 160:3363–73.

    CAS  PubMed  Google Scholar 

  5. Hunziker IP et al. (2001) Perspectives: toward a peptide-based vaccine against hepatitis C virus. Mol. Immunol. 38:475–84.

    Article  CAS  Google Scholar 

  6. Tsuji M, Zavala F. (2001) Peptide-based subunit vaccines against pre-erythrocytic stages of malaria parasites. Mol. Immunol. 38:433–42.

    Article  CAS  Google Scholar 

  7. Ertl HC, Xiang Z. (1996) Novel vaccine approaches. J. Immunol. 156:3579–82.

    CAS  PubMed  Google Scholar 

  8. DiMarchi R, Brooke G, Gale C, Cracknell V, Doel T, Mowat N. (1986) Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science 232:639–41.

    Article  CAS  Google Scholar 

  9. Casal JI et al. (1995) Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence. J. Virol. 69:7274–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Taboga O et al. (1997) A large-scale evaluation of peptide vaccines against foot-and-mouth disease: lack of solid protection in cattle and isolation of escape mutants. J. Virol. 71:2606–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nargi F et al. (1999) Protection of swine from foot-and-mouth disease with one dose of an all-D retro peptide. Vaccine 17:2888–93.

    Article  CAS  Google Scholar 

  12. Van Regenmortel MH, Guichard G, Benkirane N, Briand JP, Muller S, Brown F. (1998) The potential of retro-inverso peptides as synthetic vaccines. Dev. Biol. Stand. 92:139–43.

    PubMed  Google Scholar 

  13. Dong XN, Wei K, Liu ZQ, Chen YH. (2002) Candidate peptide vaccine induced protection against classical swine fever virus. Vaccine 21:167–73.

    Article  CAS  Google Scholar 

  14. Sidney J, Southwood S, Oseroff C, del Guercio MF, Sette A, Grey HM. (1998) The measurement of MHC/peptide interactions by gel infiltration. Curr. Protocols Immunol. 18.3.1–18.3.19.

  15. Patarroyo ME et al. (1988) A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 332:158–61.

    Article  CAS  Google Scholar 

  16. Smith JW et al. (2003). Adjuvant immunization of HLA-A2-positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+ T-cell responses. J. Clin. Oncol. 21:1562–73.

    Article  CAS  Google Scholar 

  17. Hammer J, Sturniolo T, Sinigaglia F. (1997) HLA class II peptide binding specificity and autoimmunity. Adv. Immunol. 66:67–100.

    Article  CAS  Google Scholar 

  18. Sturniolo T et al. (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17:555–61.

    Article  CAS  Google Scholar 

  19. Cunha-Neto E. (1999) MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans. Braz. J. Med. Biol. Res. 32:199–205.

    Article  CAS  Google Scholar 

  20. Rammensee HG. (1995) Chemistry of peptides associated with MHC class I and class II molecules. Curr. Opin. Immunol. 7:85–96.

    Article  CAS  Google Scholar 

  21. Rammensee HG, Friede T, Stevanoviic S. (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41:178–228.

    Article  CAS  Google Scholar 

  22. Meister GE, Roberts CG, Berzofsky JA, De Groot AS. (1995) Two novel T-cell epitope prediction algorithms based on MHC-binding motifs; comparison of predicted and published epitopes from Mycobacterium tuberculosis and HIV protein sequences. Vaccine 13:581–91.

    Article  CAS  Google Scholar 

  23. Bian H, Reidhaar-Olson JF, Hammer J. (2003) The use of bioinformatics for identifying class II-restricted T-cell epitopes. Methods 29:299–309.

    Article  CAS  Google Scholar 

  24. Schroers R, Huang XF, Hammer J, Zhang J, Chen SY. (2002) Identification of HLA DR7-restricted epitopes from human telomerase reverse transcriptase recognized by CD4+ T-helper cells. Cancer Res. 62:2600–5.

    CAS  PubMed  Google Scholar 

  25. de Lalla C, Sturniolo T, Abbruzzese L, Hammer J, Sidoli A, Sinigaglia F, Panina-Bordignon P. (1999) Cutting edge: identification of novel T cell epitopes in Lol p5a by computational prediction. J. Immunol. 163:1725–9.

    PubMed  Google Scholar 

  26. Stassar MJ, Raddrizzani L, Hammer J, Zoller M. (2001) T-helper cell-response to MHC class II-binding peptides of the renal cell carcinoma-associated antigen RAGE-1. Immunobiology 203:743–55.

    Article  CAS  Google Scholar 

  27. Cochlovius B, Stassar M, Christ O, Raddrizzani L, Hammer J, Mytilineos I, Zoller M. (2000) In vitro and in vivo induction of a Th cell response toward peptides of the melanoma-associated glycoprotein 100 protein selected by the TEPITOPE program. J. Immunol. 165:4731–41.

    Article  CAS  Google Scholar 

  28. Manici S et al. (1999) Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. J. Exp. Med. 189:871–6.

    Article  CAS  PubMed Central  Google Scholar 

  29. Consogno G et al. (2003) Identification of immunodominant regions among promiscuous HLA-DR-restricted CD4+ T-cell epitopes on the tumor antigen MAGE-3. Blood 101:1038–44.

    Article  CAS  Google Scholar 

  30. Panigada M et al. (2002) Identification of a promiscuous T-cell epitope in Mycobacterium tuberculosis Mce proteins. Infect. Immun. 70:79–85.

    Article  CAS  PubMed Central  Google Scholar 

  31. Kruger S, Schroers R, Rooney CM, Gahn B, Chen SY. (2003) Identification of a naturally processed HLA-DR-restricted T-helper epitope in Epstein-Barr virus nuclear antigen type 1. J. Immunother. 26:212–21.

    Article  Google Scholar 

  32. Shen L, Schroers R, Hammer J, Huang XF, Chen SY. (2003) Identification of a MHC class-II restricted epitope in carcinoembryonic antigen [online]. Cancer Immunol. Immunother. 18.

  33. Schroers R et al. (2003) Identification of MHC class II-restricted T-cell epitopes in prostate-specific membrane antigen. Clin. Cancer Res. 9:3260–71.

    CAS  PubMed  Google Scholar 

  34. BenMohamed L et al. (2003) Identification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity. J. Virol. 77:9463–73.

    Article  CAS  PubMed Central  Google Scholar 

  35. Campi G et al. (2003) CD4(+) T cells from healthy subjects and colon cancer patients recognize a carcinoembryonic antigen-specific immunodominant epitope. Cancer Res. 63:8481–6.

    CAS  PubMed  Google Scholar 

  36. Brummer E, Castaneda E, Restrepo A. (1993) Paracoccidioidomycosis: an update. Clin. Microbiol. Rev. 6:89–117.

    Article  CAS  PubMed Central  Google Scholar 

  37. Shikanai-Yasuda MA. (1996) Paracoccioidomycosis. In: Oxford Textbook of Medicine. Weatherall DJ, Ledinghan JGG, Warrell DA (eds.) Oxford Medical Publications, Oxford University Press, Oxford, UK. pp. 814–24.

    Google Scholar 

  38. Restrepo A, McEwen JG, Castaneda E. (2001) The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? Med. Mycol. 39:233–41.

    Article  CAS  Google Scholar 

  39. Mota NG et al. (1985) Correlation between cell-mediated immunity and clinical forms of paracoccidioidomycosis. Trans. R. Soc. Trop. Med. Hyg. 79:765–772.

    Article  CAS  Google Scholar 

  40. Calich VL, Singer-Vermes LM, Russo M, Vaz CA, Burger E. (1994) Immunogenetics in Paracoccidioidomycosis. In: Paracoccidioidomycosis. Franco M, Lacaz CS, Restrepo A, and Del Negro GM (eds.) CRC Press, Boca Raton, FL. pp. 151–73.

    Google Scholar 

  41. Biagioni L, Souza MJ, Chamma LG, Mendes RP, Marques SA, Mota NG, Franco M. (1984) Serology of paracoccidioidomycosis. II. Correlation between class-specific antibodies and clinical forms of the disease. Trans. R. Soc. Trop. Med. Hyg. 78:617–21.

    Article  CAS  Google Scholar 

  42. Camargo ZP, Unterkircher C, Travassos LR. (1989) Identification of antigenic polypeptides of Paracoccidioides brasiliensis by immunoblotting. J. Med. Vet. Mycol. 27:407–12.

    Article  CAS  Google Scholar 

  43. Benard G, Mendes-Giannini MJ, Juvenale M, Miranda ET, Duarte AJ. (1997) Immunosuppression in paracoccidioidomycosis: T-cell hyporesponsiveness to two Paracoccidioides brasiliensis glycoproteins that elicit strong humoral immune response. J. Infect. Dis. 175:1263–7.

    Article  CAS  Google Scholar 

  44. DelNegro GM et al. (2000) Evaluation of tests for antibody response in the follow-up of patients with acute and chronic forms of paracoccidioidomycosis. J. Med. Microbiol. 49:37–46.

  45. Souza AR et al. (2000) Anti-idiotypic antibodies in patients with different clinical forms of paracoccidioidomycosis. Clin. Diagn. Lab. Immunol. 7:175–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Puccia R, Schenkman S, Gorin PA, Travassos LR. (1986) Exocellular components of Paracoccidioides brasiliensis: identification of a specific antigen. Infect. Immun. 53:199–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Puccia R, Travassos LR. (1991) 43-kilodalton glycoprotein from Paracoccidioides brasiliensis: immunochemical reactions with sera from patients with paracoccidioidomycosis, histoplasmosis, or Jorge Lobo’s disease. J. Clin. Microbiol. 29:1610–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Travassos LR, Taborda CP, Iwai LK, Cunha-Neto E, Puccia R. (2004) The gp43 from Paracoccidioides brasiliensis: A major diagnostic antigen and vaccine candidate. In: The Mycota XII. Human Fungal Pathogens. Domer JE, Kobayashi GS (eds.) Springer-Verlag, Berlin-Heidelberg, pp. 279–96.

    Chapter  Google Scholar 

  49. De Camargo Z, Unterkircher C, Campoy SP, Travassos LR. (1988) Production of Paracoccidioides brasiliensis exoantigens for immunodiffusion tests. J. Clin. Microbiol. 26:2147–51.

    PubMed  PubMed Central  Google Scholar 

  50. Taborda CP, Camargo ZP. (1993) Diagnosis of paracoccidioidomycosis by passive haemagglutination assay of antibody using a purified and specific antigen-gp43. J. Med. Vet. Mycol. 31:155–60.

    Article  CAS  Google Scholar 

  51. Saraiva EC, Altemani A, Franco MF, Unterkircher CS, Camargo ZP. (1996) Paracoccidioides brasiliensis-gp43 used as paracoccidioidin. J. Med. Vet. Mycol. 34:155–61.

    Article  CAS  Google Scholar 

  52. Geginat J, Lanzavecchia A, Sallusto F. (2003) Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 100(11):4260–6.

    Article  Google Scholar 

  53. Hammer J et al. (1994) High-affinity binding of short peptides to major histocompatibility complex class II molecules by anchor combinations. Proc. Natl. Acad. Sci. U. S. A. 91:4456–60.

    Article  CAS  PubMed Central  Google Scholar 

  54. Atherton E, Sheppard RC. (1989) Solid Phase Peptide Synthesis: A Practical Approach. IRL Press, Oxford, UK. 152 p.

    Google Scholar 

  55. King DS, Fields CG, Fields GB. (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int. J. Pept. Protein Res. 36:255–66.

    Article  CAS  Google Scholar 

  56. Crevat D, Kalil J, Rosa F, Fellous M. (1983) Presence of 2 different epitopes on the human beta 2-microglobulin defined by monoclonal antibodies. Ann. Immunol. (Paris) 134C:31–41.

    CAS  Google Scholar 

  57. Kalil J, Crevat D, Fellous M, Drouet J, Courouce AM, Ropars C. (1981) Production of monoclonal antibodies against HBs. Ann. Immunol. (Paris) 132C:319–26.

    CAS  Google Scholar 

  58. Guilherme L et al. (2001). T-cell reactivity against streptococcal antigens in the periphery mirrors reactivity of heart-infiltrating T lymphocytes in rheumatic heart disease patients. Infect. Immun. 69:5345–51.

    Article  CAS  PubMed Central  Google Scholar 

  59. Gustincich S, Manfioletti G, Del Sal G, Schneider C, Carninci P. (1991) A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11:298–300, 302.

    CAS  PubMed  Google Scholar 

  60. Bignon JD, Fernandez-Vina MA. (1997) Protocols of the 12th International Histocompatibility Workshop for typing of HLA class II alleles by DNA amplification by the polymerase chain reaction (PCR) and hybridation with sequence specific oligonucleotide probes (SSOP). In: Genetic Diversity of HLA Functional and Medical Implication. Fauchet R, Charron D (eds.) Paris, France, EDK Medical and Scientific International Publisher, pp. 584–95.

    Google Scholar 

  61. Olerup O, Zetterquist H. (1992) HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39:225–35.

    Article  CAS  Google Scholar 

  62. Goldberg AC, Marin ML, Chiarella J, Rosales C, Kalil J. (1997) Brazil normal. In: HLA 1997. Gjertson DW, Terasaki PI (eds.) UCLA Tissue Typing Laboratory, American Society for Histocompatibility and Immunogenetics, Los Angeles, CA. 330 pp.

    Google Scholar 

  63. Hammer J (1995) New methods to predict MHC-binding sequences within protein antigens. Curr. Opin. Immunol. 7:263–9.

    Article  CAS  Google Scholar 

  64. Sinigaglia F, Romagnoli P, Guttinger M, Takacs B, Pink JR (1991) Selection of T-cell epitopes and vaccine engineering. Methods Enzymol. 203:370–86.

    Article  CAS  Google Scholar 

  65. Meloen RH, Langeveld JP, Schaaper WM, Slootstra JW. (2001) Synthetic peptide vaccines: unexpected fulfillment of discarded hope? Biologicals 29:233–6.

    Article  CAS  Google Scholar 

  66. Alexander J et al. (2002) A decaepitope polypeptide primes for multiple CD8+ IFN-gamma and Th lymphocyte responses: evaluation of multiepitope polypeptides as a mode for vaccine delivery. J. Immunol. 168:6189–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Maria Lúcia Marin who helped us with determining the HLA of patients, Dr Simone Gonçalves da Fonseca and Renata Cristina Ferreira who helped with FACS acquisition, and Washington Robert da Silva for technical assistance. This study was supported by grant 00-08404-3 and LKI was supported by fellowship grant 99/15319-6 from São Paulo State Science Funding Agency (FAPESP). ECN is the recipient of productivity grant 520533/97-6 from the Brazilian National Research Council (CNPq). AS and JS are supported by National Institutes of Health contracts N01-AI-95362 and HHSN266200400006C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edecio Cunha-Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwai, L.K., Yoshida, M., Sidney, J. et al. In Silico Prediction of Peptides Binding to Multiple HLA-DR Molecules Accurately Identifies Immunodominant Epitopes from gp43 of Paracoccidioides brasiliensis Frequently Recognized in Primary Peripheral Blood Mononuclear Cell Responses from Sensitized Individuals. Mol Med 9, 209–219 (2003). https://doi.org/10.1007/BF03402131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402131

Keywords

Navigation