Skip to main content

Advertisement

Log in

Effects of Free Fatty Acid on Polymerization of Islet Amyloid Polypeptide (IAPP) In Vitro and on Amyloid Fibril Formation in Cultivated Isolated Islets of Transgenic Mice Overexpressing Human IAPP

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Islet amyloid polypeptide (IAPP) is deposited as amyloid in the islets of Langerhans in type 2 diabetes. The mechanism behind the formation of the cytotoxic fibrils is unknown. Islet amyloid develops in a mouse IAPP null mouse strain that expresses human IAPP (+hIAPP/−mIAPP) after 9 months on a high-fat diet. Herein we investigate the effect that individual free fatty acids (FFAs) exert on formation of amyloid-like fibrils from synthetic IAPP and the effects of FFAs on IAPP polymerization in +hIAPP/−mIAPP islets cultivated in vitro.

Materials and Methods

In the study myristic acid, palmitic acid, stearic acid, oleic acid, and linoleic acid were used together with albumin. Thioflavin T (Th T) assay was used for quantification of amyloid-like fibrils. Islets were isolated from the + hIAPP/−mIAPP transgenic strain and cultured in the presence of the FFAs for 2 days. Immunoelectron microscopy was used for evaluation.

Results

The Th T assay showed that all studied FFAs potentiated fibril formation but that myristic acid revealed the highest capacity. In some cells from cultured islets, intragranular aggregates were present. These aggregates had a filamentous appearance and labeled with antibodies against IAPP. In some cells cultured in the presence of linoleic acid, large amounts of intracellular amyloid were present. Earlier, this has not been observed after such a short incubation period.

Conclusions

Our studies suggest that FFAs can potentiate amyloid formation in vitro, probably without being integrated in the fibril. Cultivation of +hIAPP/−mIAPP transgenic mouse islets with FFAs results in altered morphology of the secretory granules with appearance of IAPP-immunoreactive fibrillar material. We suggest that such fibrillar material may seed extracellular amyloid formation after exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bell ET. (1952) Hyalinization of the islets of Langerhans in diabetes mellitus. Diabetes 1: 341–344.

    Article  CAS  PubMed  Google Scholar 

  2. Westermark P. (1995) Islet amyloid polypeptide and amyloid in the islets of Langerhans. In Leslie RDG, Robbins D (eds). Diabetes: Clinical Science in Practice. Cambridge: Cambridge University Press; pp. 189–199.

    Google Scholar 

  3. Westermark P, Wernstedt C, Wilander E, Sletten K. (1986) A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem. Biophys. Res. Commun. 140: 827–831.

    Article  CAS  PubMed  Google Scholar 

  4. Westermark P, Wernstedt C, Wilander E, et al. (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. U. S. A. 84: 3881–3885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cooper GJ, Willis AC, Clark A, et al. (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. U. S. A. 84: 8628–8632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kahn SE, Andrikopoulos S, Verchere CB. (1999) Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 48: 241–253.

    Article  CAS  PubMed  Google Scholar 

  7. Höppener JW, Ahren B, Lips CJ. (2000) Islet amyloid and type 2 diabetes mellitus. N. Engl. J. Med. 10: 411–419.

    Article  Google Scholar 

  8. Gebre-Medhin S, Mulder H, Pekny M, et al. (1998) Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem. Biophys. Res. Commun. 250: 271–277.

    Article  CAS  PubMed  Google Scholar 

  9. O’Brien TD, Wagner JD, Litwak KN, et al. (1996) Islet amyloid and islet amyloid polypeptide in cynomolgus macaques (Macaca fascicularis): an animal model of human non-insulindependent diabetes mellitus. Vet. Pathol. 33: 479–485.

    Article  PubMed  Google Scholar 

  10. Betsholtz C, Svensson V, Rorsman F, et al. (1989) Islet amyloid polypeptide (IAPP):cDNA cloning and identification of an amyloidogenic region associated with the species-specific occurrence of age-related diabetes mellitus. Exp. Cell Res. 183: 484–493.

    Article  CAS  PubMed  Google Scholar 

  11. D’Alessio DA, Verchere CB, Kahn SE, et al. (1994) Pancreatic expression and secretion of human islet amyloid polypeptide in a transgenic mouse. Diabetes 43: 1457–1461.

    Article  PubMed  Google Scholar 

  12. De Koning EJ, Höppener JW, Oosterwijk C, et al. (1993) Localisation of islet amyloid polypeptide (IAPP) in pancreatic islets of transgenic mice expressing the human or rat IAPP gene. Biochem. Soc. Trans. 21: 26S

    Article  PubMed  Google Scholar 

  13. Fox N, Schrementi J, Nishi M, et al. (1993) Human islet amyloid polypeptide transgenic mice as a model of non-insulin-dependent diabetes mellitus (NIDDM). FEBS Lett. 323: 40–44.

    Article  CAS  PubMed  Google Scholar 

  14. Yagui K, Yamaguchi T, Kanatsuka A, et al. (1995) Formation of islet amyloid fibrils in beta-secretory granules of transgenic mice expressing human islet amyloid polypeptide/amylin. Eur. J. Endocrinol. 132: 487–496.

    Article  CAS  PubMed  Google Scholar 

  15. Verchere CB, D’Alessio DA, Palmiter RD, et al. (1996) Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc. Natl. Acad. Sci. U.S.A. 93: 3492–3496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Janson J, Soeller WC, Roche PC, et al. (1996) Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc. Natl. Acad. Sci. U.S.A. 93: 7283–7288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsunehara CH, Leonetti DL, Fujimoto WY. (1990) Diet of second-generation Japanese-American men with and without non-insulin-dependent diabetes. Am. J. Clin. Nutr. 52: 731–738.

    Article  CAS  PubMed  Google Scholar 

  18. Lee SK, Opara EC, Surwit RS, et al. (1998) Defective glucose-stimulated insulin release from perifused islets of C57BL/6J mice. Pancreas 11: 206–211.

    Article  Google Scholar 

  19. Skelly RH, Bollheimer LC, Wicksteed BL, et al. (1998) A distinct difference in the metabolic stimulus-response coupling pathways for regulating proinsulin biosynthesis and insulin secretion that lies at the level of a requirement for fatty acyl moieties. Biochem. J. 331: 553–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou Y-P, Grill VE. (1994) Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J. Clin. Invest. 93: 870–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furukawa H, Carroll RJ, Swift HH, Steiner DF. (1999) Long-term elevation of free fatty acids leads to delayed processing of proinsulin and prohormone convertases 2 and 3 in the pancreatic beta-cell line MIN6. Diabetes 48: 1395–1401.

    Article  CAS  PubMed  Google Scholar 

  22. Westermark GT, Gebre-Medhin S, Steiner DF, Westermark P. (2000) Islet amyloid development in a mouse strain lacking endogenous islet amyloid polypeptide (IAPP) but expressing human IAPP. Mol. Med. 6: 998–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Westermark GT, Leckström A, Ma Z, Westermark P. (1998) Increased release of IAPP in response to long-term high fat intake in mice. Horm. Metab. Res. 30: 256–258.

    Article  CAS  PubMed  Google Scholar 

  24. Westermark P, Li ZC, Westermark GT, et al. (1996) Effects of beta cell granule components on human islet amyloid polypeptide fibril formation. FEBS Lett. 379: 203–206.

    Article  CAS  PubMed  Google Scholar 

  25. Janciauskiene S, Eriksson S, Carlemalm E, Ahrén B. (1997) B cell granule peptides affect human islet amyloid polypeptide (IAPP) fibril formation in vitro. Biochem. Biophys. Res. Commun. 236: 580–585.

    Article  CAS  PubMed  Google Scholar 

  26. Kudva YC, Mueske C, Butler PC, Eberhardt NL. (1998) A novel assay in vitro of human islet amyloid polypeptide amyloidogenesis and effects of insulin secretory vesicle peptides on amyloid formation. Biochem. J. 331: 809–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilson DM, Binder LI. (1997) Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease. Am. J. Pathol. 150: 2181–2195.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Puchtler H, Sweat F, Levine M. (1962) On the binding of Congo red by amyloid. J. Histochem. Cytochem. 10: 355–364.

    Article  CAS  Google Scholar 

  29. LeVine H 3rd. (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2: 404–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. LeVine H 3rd. (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Meth. Enzymol. 309: 274–284.

    Article  CAS  PubMed  Google Scholar 

  31. Christmanson L, Betsholtz C, Leckström A, et al. (1993) Islet amyloid polypeptide in the rabbit and European hare: studies on its relationship to amyloidogenesis. Diabetologia 36: 183–188.

    Article  CAS  PubMed  Google Scholar 

  32. Rochet JC, Lansbury PT Jr. (2000) Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struct. Biol. 10: 60–68.

    Article  CAS  PubMed  Google Scholar 

  33. Prentki M, Vischer S, Glennon MC, et al. (1992) Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J. Biol. Chem. 267: 5802–5810.

    PubMed  CAS  Google Scholar 

  34. Brodersen R, Andersen S, Vorum H, et al. (1990) Multiple fatty acid binding to albumin in human blood plasma. Eur. J. Biochem. 30: 343–349.

    Article  Google Scholar 

  35. Wisniewski T, Frangione B. (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci. Lett. 135: 235–238.

    Article  CAS  PubMed  Google Scholar 

  36. Couce M, Kane LA, O’Brien TD, et al. (1996) Treatment with growth hormone and dexamethasone in mice transgenic for human islet amyloid polypeptide causes islet amyloidosis and β-cell dysfunction. Diabetes 45: 1094–1101.

    Article  CAS  PubMed  Google Scholar 

  37. MacArthur DL, de Koning EJ, Verbeek JS, et al. (1999) Amyloid fibril formation is progressive and correlates with beta-cell secretion in transgenic mouse isolated islets. Diabetologia 42: 1219–1227.

    Article  CAS  PubMed  Google Scholar 

  38. Westermark P. (1973) Fine structure of islets of Langerhans in insular amyloidosis. Virchows Arch. A 359: 1–18.

    Article  CAS  Google Scholar 

  39. O’Brien TD, Butler AE, Roche PC, et al. (1994) Islet amyloid polypeptide in human insulinomas. Evidence for intracellular amyloidogenesis. Diabetes 43: 329–336.

    Article  PubMed  Google Scholar 

  40. Westermark P, Eizirik DL, Pipeleers DG, et al. (1995) Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia 38: 543–549.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Swedish Medical Research Council (project No 14040), the Research Fund of the Swedish Diabetes Association, the Novo Nordisk Foundation, Ollie and Elof Ericssons research fund, the Åke Wibergs research fund, and Stiftelsen Gamla Tjänarinnor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunilla T. Westermark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z., Westermark, G.T. Effects of Free Fatty Acid on Polymerization of Islet Amyloid Polypeptide (IAPP) In Vitro and on Amyloid Fibril Formation in Cultivated Isolated Islets of Transgenic Mice Overexpressing Human IAPP. Mol Med 8, 863–868 (2002). https://doi.org/10.1007/BF03402092

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402092

Keywords

Navigation