Skip to main content

Advertisement

Log in

Fc-Receptor-Mediated Intracellular Delivery of Cu/Zn-superoxide Dismutase (SOD1) Protects Against Redox-Induced Apoptosis Through a Nitric Oxide Dependent Mechanism

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Using specific antibodies against bovine Cu/Zn-superoxide dismutase (EC 1.15.1.1, SOD1) we demonstrated that anti-SOD antibodies (IgG1) are able to promote the intracellular translocation of the antioxidant enzyme. The transduction signalling mediated by IgG1 immune complexes are known to promote a concomitant production of superoxide and nitric oxide leading to the production of peroxynitrites and cell death by apoptosis. The Fc-mediated intracellular delivery of SOD1 thus limited the endogenous production of superoxide. It was thus of interest to confirm that in the absence of superoxide anion, the production of nitric oxide protected cells against apoptosis. Study in greater detail clearly stated that under superoxide anion-free conditions, nitric oxide promoted the cell antioxidant armature and thus protected cells against redox-induced apoptosis.

Materials and Methods

The murine macrophage cell-lines J774 A1 were preactivated or not with interferon-γ and were then stimulated by IgG1 immune complexes (IC), free SOD1 or SOD1 IC and superoxide anion, nitric oxide, peroxynitrite, and tumor necrosis factor-α (TNF-α) production was evaluated. The redox consequences of these activation processes were also evaluated on mitochondrial respiration and apoptosis as well as on the controlled expression of the cellular antioxidant armature.

Results

We demonstrated that SOD1 IC induced a Fcγ receptor (FcγR)-dependent intracellular delivery of the antioxidant enzyme in IFN-γ activated murine macrophages (the J774 A1 cell line). The concomitant stimulation of the FcγR and the translocation of the SOD1 in the cytoplasm of IFN-γ-activated macrophages not only reduced the production of superoxide anion but also induced the expression of the inducible form of nitric oxide synthase (iNOS) and the related NO production. This inducing effect in the absence of superoxide anion production reduced mitochondrial damages and cell death by apoptosis and promoted the intracellular antioxidant armature.

Conclusions

To define the pharmacologic mechanism of action of bovine SOD1, we attempted to identify the second messengers that are induced by SOD1 IC. In this work, we propose that Fc-mediated intracellular delivery of the SOD1 that reduced the production of superoxide anion and of peroxynitrite, promoted a NO-induced protective effect in inducing the antioxidant armature of the cells. Taken together, these data suggested that specific immune responses against antigenic SOD1 could promote the pharmacological properties of the antioxidant enzyme likely via a NO-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McCord JM, Fridovich I. (1969) Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049–6055.

    PubMed  CAS  Google Scholar 

  2. Zimmerman JJ (1991) Therapeutic application of oxygen radical scavengers. Chest 100: 189S–192S.

    Article  CAS  PubMed  Google Scholar 

  3. Jadot G, Vaille A, Maldonado J, Vanelle P. (1995) Clin. Pharmacokinet. 28: 17–25.

    Article  CAS  PubMed  Google Scholar 

  4. Ouaaz F, Ruscetti FW, Dugas B, Mikovitz J, Agut M, Debré P, and Mossalayi MD. (1996) Biphasic effects of IgE-immune complexes on HIV-1 + monocytic U1 cell line: involvement of CD23/FcεRII transduction signals. Mol. Med. 2: 38–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Schwartz KB. (1996) Oxidative stress during viral infection: a review. Free Rad Biol Med. 21: 641–649.

    Article  Google Scholar 

  6. Harris ED. (1992) Regulation of antioxidant enzymes. FASEB J. 6: 2675–2683.

    Article  CAS  PubMed  Google Scholar 

  7. Vaille A, Jadot G, Elizagaray A. (1990) Anti-inflammatory activity of various superoxide dismutase on polyarthritis in the Lewis rat. Biochem. Pharmacol. 39: 247–255.

    Article  CAS  PubMed  Google Scholar 

  8. Lund-Olesen K, Memander KB. (1974) Orgotein: a new anti-inflammatory metalloprotein drug preliminary evaluation of clinical efficacy and safety in degenerative joint disease. Curr. Ther. Res. 16: 706–717.

    PubMed  CAS  Google Scholar 

  9. Marklund SL. (1980) Distribution of Cu/Zn-superoxide dismutase and Mn superoxide dismutase in human tissues and extracellular fluids. Acta Physiologica. Scand. 492: 19–23.

    CAS  Google Scholar 

  10. Michelson AM, Jadot G, Puget K. (1987) Mechanism of anti-inflammatory activity of superoxide dismutases. In: Hayashi O, Imamura I, Miyachi Y (eds.) The Biological Role of Reactive Oxygen Species in Skin. University of Tokyo Press, Tokyo, pp. 199–210.

    Google Scholar 

  11. Mozaffarian N, Berman JW, Casadevall A. (1995) Immune complexes increase nitric oxide production by interferon-gamma-stimulated murine macrophage-like J774.16 cells. J. Leukoc. Biol. 57: 657–662.

    Article  CAS  PubMed  Google Scholar 

  12. Muto S, Sumai K, Inage Y, Matsumoto K, Yuki I. (1996) Nitric oxide and immune complexes are involved in the induction of a novel luminol chemiluminescence in cytotoxic macrophages. Biol. Pharm. Bull. 19: 1521–1523.

    Article  CAS  PubMed  Google Scholar 

  13. Markey BA, Phan SH, Varani J, Ryan US, Ward PA. (1990) Inhibition of cytotoxicity by intracellular superoxide dismutase supplementation. Free Rad. Biol. Med. 9: 307–314.

    Article  CAS  PubMed  Google Scholar 

  14. Kolb JP, Paul-Eugène N, Abadie A, Yamaoka K, Drapier JC, Dugas B. (1994) IL-4-stimulates cGMP production in normal IFN-γ-activated human monocytes. Involvement of the NOsynthase pathway. J. Biol. Chem. 269: 9811–9819.

    PubMed  CAS  Google Scholar 

  15. Mossalayi AM, Paul-Eugène N, Ouaaz F, et al. (1994) CD23-ligation by IgE induces the release of pro-inflammatory mediators from human monocytes through an L-arginine-dependent pathway. Int. Immunol. 6: 931–935.

    Article  CAS  PubMed  Google Scholar 

  16. Kooy NW, Royall JA, Ischiropoulos H, Beckman JS. (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Rad. Biol. Med. 16: 149–156.

    Article  CAS  PubMed  Google Scholar 

  17. Wong GH, Elwell JH, Oberley LW, Goeddel DV. (1989) Manganous superoxide dismutase is essential for cellular resistance to cytoxicity of tumor necrosis factor. Cell 58: 923–931.

    Article  CAS  PubMed  Google Scholar 

  18. Lowry OH, Resebrough NJ, Farr AL, Randall RJ. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  PubMed  Google Scholar 

  19. Vouldoukis I, Riveros-Moreno V, Dugas B, et al. (1995) IgE induces Leishmania major killing by human macrophages: a role for FcεRII/CD23-mediated stimulation of nitric oxide pathway. Proc. Natl. Acad. Sci. USA 92: 7804–7811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dugas N, Mossalayi MD, Calenda A, et al. (1996) Nitric oxide involvement in the antitumoral effect of retinoic acid and 1,25-dihydro-xyvitamin D3 on human promonocytic leukemic cells. Blood 80: 804–812.

    Google Scholar 

  21. Xie QW, Cho HJ, Calaycay J, et al. (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225–228.

    Article  CAS  PubMed  Google Scholar 

  22. Szabo C, Day BJ, Slazman A. (1996) Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett. 381: 82–86.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao H, Dugas N, Mathiot C, et al. (1998) B-cell chronic lymphocytic leukemia cells express a functional inducible nitric oxide synthase displaying anti-apoptotic activity. Blood 92: 1031–1038.

    PubMed  CAS  Google Scholar 

  24. Yokozawa T, Chung HY, He LQ, Oura H. (1996) Effectiveness of green tea tannin on rats with chronic rat failure. Biosci. Biotech. Biochem. 60: 1000–1005.

    Article  CAS  Google Scholar 

  25. Sandstrom PA, Tebbey PW, Van Cleave S, Buttke T. (1994) Lipid hydroperoxydes induce apoptosis in T cells displaying a HIV-associated glutathione peroxydase deficiency. J. Biol. Chem. 14: 798–801.

    Google Scholar 

  26. Gross A, Dugas N, Spiesser S, et al. (1998) Nitric oxide production in human macrophagic cells phagocytizing opsonized zymozan: direct characterization by measurement of the luminol dependent chemiluminescence. Free Rad. Res. 28: 179–185.

    Article  CAS  Google Scholar 

  27. Ischiropoulos H, Zhu L, Beckman JS. (1992) Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298: 446–451.

    Article  CAS  PubMed  Google Scholar 

  28. Komorev EA, Kennedy MC, Kalyanaraman B. (1999) Cell-permeable superoxide dismutase and gluthatione peroxidase mimetics afford superior protection against doxorubicin-induced cardiotoxicity: the role of reactive oxygen and nitrogen intermediates. Arch. Biochem. Biophys. 368: 421–428.

    Article  Google Scholar 

  29. Winyard PG, Blake DR. (1997) Antioxidants, redox-regulated transcription factors, and inflammation. Adv. Pharmacol. 38: 403–421.

    Article  CAS  PubMed  Google Scholar 

  30. Kroemer G, Petit P, Zamzami N, Vayssières JL, Mignotte B. (1995) The biochemistry of programmed cell death. FASEB J. 9: 1277–1287.

    Article  CAS  PubMed  Google Scholar 

  31. Lander HM. (1997) An essential role for free radicals and derived species in signal transduction. FASEB J. 11: 118–124.

    Article  CAS  PubMed  Google Scholar 

  32. Regnault C, Soursac M, Roch-Arveiller M, Postaire E, Hazebroucq G. (1996) Pharmacokinetics of superoxide dismutase in rats after oral administration. Biopharmaceutics Drug Disposition 17: 165–174.

    Article  CAS  PubMed  Google Scholar 

  33. Dugas B, Mossalayi MD, Damais D, Kolb JP. (1995) Nitric oxide production by human monocytes/macrophages: evidence for a role of CD23. Immunol. Today 16: 574–581.

    Article  CAS  PubMed  Google Scholar 

  34. Marcinkiewicz J, Grabowska A, Chain B. (1995) Nitric oxide up-regulate the release of inflammatory mediators by mouse macrophages. Eur. J. Immunol. 25: 947–951.

    Article  CAS  PubMed  Google Scholar 

  35. Albina JE, Cui S, Mateo RB, Reichner JS. (1993) Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J. Immunol. 150: 5080–5085.

    PubMed  CAS  Google Scholar 

  36. Harrison J, Shi X, Wang L, Ma JK, Rojanasakul Y. (1994) Novel delivery of antioxidant enzyme catalase to alveolar macrophages by Fc receptor-mediated endocytosis. Pharm. Res. 11: 1110–1114.

    Article  CAS  PubMed  Google Scholar 

  37. Brown DR, Schmidt B, Kretzschmar HA. (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380: 345–347.

    Article  CAS  PubMed  Google Scholar 

  38. Brown P. (1996) Bovine spongiform encephalopathy and Creutzfeldt-Jakob disease. Brit. J. Med. 312: 790–791.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Dugas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vouldoukis, I., Sivan, V., Vozenin, M.C. et al. Fc-Receptor-Mediated Intracellular Delivery of Cu/Zn-superoxide Dismutase (SOD1) Protects Against Redox-Induced Apoptosis Through a Nitric Oxide Dependent Mechanism. Mol Med 6, 1042–1053 (2000). https://doi.org/10.1007/BF03402055

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402055

Keywords

Navigation