Skip to main content

Advertisement

Log in

Lack of Interferon-γ Production Despite the Presence of Interleukin-18 During Cutaneous Wound Healing

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Recently, we have reported a rapid and strong induction of interleukin-18 (IL-18) upon cutaneous injury in mice. In this paper, we investigated a possible role of IL-18 in triggering interferon-γ (IFN-γ) production at the wound site.

Materials and Methods

Expression of IFN-γ during cutaneous wound healing was analyzed by RNase protection assay, Western blot, ELISA, and immunohistochemical techniques in a murine model of excisional skin repair.

Results

We could not detect any IFN-γ mRNA and protein expression during normal skin repair. Additionally, impaired healing in the genetically diabetic db/db mouse, which was used as a model for a prolonged inflammatory phase of repair, was characterized by largely elevated levels of IL-18 during the late phase of repair and an absence of IFN-γ. Western blot analysis for T-cell- and monocyte/macrophage-specific marker proteins (CD4, F4/80) clearly revealed the presence of these subsets of leukocytic cells at the wound site, that are known to produce IFN-γ in response to IL-18. Furthermore, we provide evidence that the presence of transforming growth factor-β1 (TGF-β1) at the wound site might reflect a counterregulatory mechanism in IL-18-induced IFN-γ production, as TGF-β1 strongly suppressed IL-18/phytohaemagglutinin (PHA)-induced IFN-γ production by peripheral blood mononuclear cells (PBMC) in vitro.

Conclusions

Normal tissue regeneration processes after cutaneous injury were not dependent on the presence of IFN-γ in vivo, and IL-18 must serve additional roles rather than inducing IFN-γ during the healing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jimenez SA, Freundlich B, Rosenbloom J. (1984) Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J. Clin. Invest. 74: 1112–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Duncan MR, Berman B. (1987) Persistence of a reduced-collagen-producing phenotype in cultured scleroderma fibroblasts after short term exposure to interferons. J. Clin. Invest. 79: 1318–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Czaja MJ, Weiner FR, Eghbali M, Giambrone M, Eghbali M, Zern MA. (1987) Differential effects of gamma-interferon on collagen and fibronectin gene expression. J. Biol. Chem. 262: 13348–13351.

    PubMed  CAS  Google Scholar 

  4. Granstein RD, Flotte TJ, Amento EP. (1990) Interferons and collagen production. J. Invest. Dermatol. 95: 75–80.

    Article  Google Scholar 

  5. Fleischmajer R, Perlish JJ, Duncan M. (1983) Scleroderma: a model for fibrosis. Arch. Dermatol. 119: 957–962.

    Article  CAS  PubMed  Google Scholar 

  6. Murray JC, Pollack SV, Pinnell SR. (1981) Keloids: a review. J. Am. Acad. Dermatol. 4: 461–470.

    Article  CAS  PubMed  Google Scholar 

  7. Symington FW. (1989) Lymphotoxin, tumor necrosis factor, and gamma interferon are cytostatic for normal human keratinocytes. J. Invest. Dermatol. 92: 798–805.

    Article  CAS  PubMed  Google Scholar 

  8. Scheynius A, Fransson J, Johansson C, Hammar H, Baker B, Fry L, Valsimarsson H. (1992) Expression of interferon-gamma receptors in normal and psoriatic skin. J. Invest. Dermatol. 98: 255–258.

    Article  CAS  PubMed  Google Scholar 

  9. Hein R, Behr J, Hundgen M, et al. (1992) Treatment of systemic sclerosis with gamma-interferon. Br. J. Dermatol. 126: 496–501.

    Article  CAS  PubMed  Google Scholar 

  10. Hunzelmann N, Anders S, Fierlbeck G, et al. (1997) Systemic scleroderma. Multicenter trial of 1 year of treatment with recombinant interferon gamma. Arch. Dermatol. 13: 609–613.

    Article  Google Scholar 

  11. Granstein RD, Murphy GF, Margolis RJ, Byrne MH, Amento EP. (1987) Gamma interferon inhibits collagen synthesis in vivo in the mouse. J. Clin. Invest. 79: 1254–1258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Granstein RD, Deak MR, Jacques SL, et al. (1989) The systemic administration of gamma interferon inhibits collagen synthesis and acute inflammation in a murine skin wounding model. J. Invest. Dermatol. 93: 18–27.

    Article  CAS  PubMed  Google Scholar 

  13. Munder M, Mallo M, Eichmann K, Modolell M. (1998) Murine macrophages secrete interferon-γ upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J. Exp. Med. 187: 2103–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Howie SEM, Aldridge RD, McVittie E, Forsey RJ, Sands C, Hunter JAA. (1996) Epidermal keratinocyte production of interferon-γ immunoreactive protein and mRNA is an early event in allergic contact dermatitis. J. Invest. Dermatol. 106: 1218–1223.

    Article  CAS  PubMed  Google Scholar 

  15. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136: 2348–2357.

    PubMed  CAS  Google Scholar 

  16. Mosmann TR, Coffman RL. (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7: 145–173.

    Article  CAS  PubMed  Google Scholar 

  17. Fishel RS, Barbul A, Beschorner WE, Wasserkrug HL, Efron G. (1987) Lymphocyte participation in wound healing: morphologic assessment using monoclonal antibodies. Ann. Surg. 206: 25–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ross R, Benditt EP. (1962) Wound healing and collagen formation. Fine structure in experimental scurvy. J. Cell Biol. 12: 533–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Efron JE, Frankel FL, Lazarou SA, Wasserkrug HL, Barbul A. (1990) Wound healing and T-lymphocytes. J. Surg. Res. 48: 460–463.

    Article  CAS  PubMed  Google Scholar 

  20. Kämpfer H, Kalina U, Mühl H, Pfeilschifter J, Frank S. (1999) Counterregulation of interleukin-18 mRNA and protein expression during cutaneous wound repair in mice. J. Invest. Dermatol. 113: 369–374.

    Article  PubMed  Google Scholar 

  21. Coleman DL. (1982) Diabetes-obesity syndromes in mice. Diabetes 31: 1–6.

    Article  CAS  PubMed  Google Scholar 

  22. Chen H, Charlat O, Tartaglia LA, et al. (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84: 491–495.

    Article  CAS  PubMed  Google Scholar 

  23. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379: 632–635.

    Article  CAS  PubMed  Google Scholar 

  24. Chomczynski P, Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  25. Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT. (1992) Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc. Natl. Acad. Sci. USA 89: 6896–6900.

    Article  CAS  PubMed  Google Scholar 

  26. Gray PW, Goeddel DV. (1983) Cloning and expression of murine immune interferon cDNA. Proc. Natl. Acad. Sci. USA 80: 5842–5846.

    Article  CAS  PubMed  Google Scholar 

  27. Chu W, Johnson DA, Musich PR. (1992) Molecular cloning and characterization of mouse mast cell chymases. Biochem. Biophys. Acta 1121: 83–87.

    PubMed  CAS  Google Scholar 

  28. Mühl H, Dinarello CA. (1997) Macrophage inflammatory protein-1 alpha production in lipopolysaccharide-stimulated human adherent blood mononuclear cells is inhibited by the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine. J. Immunol. 159: 5063–5069.

    PubMed  Google Scholar 

  29. Akira S. (2000) The role of IL-18 in innate immunity. Curr. Opin. Immunol. 12: 59–63.

    Article  CAS  PubMed  Google Scholar 

  30. Wetzler C, Kämpfer H, Stallmeyer B, Pfeilschifter J, Frank S. (2000) Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistance of neutrophils and macrophages during the late phase of repair. J. Invest. Dermatol. 115: 245–253.

    Article  CAS  PubMed  Google Scholar 

  31. Maddon PJ, Molineaux SM, Maddon DE, et al. (1987) Structure and expression of the human and mouse T4 genes. Proc. Natl. Acad. Sci. USA 84: 9155–9159.

    Article  CAS  PubMed  Google Scholar 

  32. Austyn JM, Gordon S. (1981) F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur. J. Immunol. 11: 805–815.

    Article  CAS  PubMed  Google Scholar 

  33. Mizutani H, Schechter N, Lazarus G, Black RA, Kuppers TS. (1991) Rapid and specific conversion of precursor interleukin 1β (IL-1β) to an active IL-1 species by human mast cell chymase. J. Exp. Med. 174: 821–825.

    Article  CAS  PubMed  Google Scholar 

  34. Hazuda DJ, Strickler J, Kueppers F, Simon PL, Young PR. (1990) Processing of precursor interleukin 1β and inflammatory disease. J. Biol. Chem. 265: 6318–6322.

    CAS  PubMed  Google Scholar 

  35. Schonbeck U, Mach F, Libby P. (1998) Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J. Immunol. 161: 3340–3346.

    CAS  PubMed  Google Scholar 

  36. Martin P. (1997) Wound healing—aiming for perfect skin regeneration. Science 276: 75–81.

    Article  CAS  PubMed  Google Scholar 

  37. Eckes B, Aumailley M, Krieg T. (1996) Collagens and the reestablishment of dermal integrity. In: Clark RAF (ed.) The Molecular and Cellular Biology of Wound Repair. Plenum Press, New York, pp. 493–512.

    Google Scholar 

  38. Frank S, Madlener M, Werner S. (1996) Transforming growth factors β1, β2, and β3 and their receptors are differentially regulated during normal and impaired wound healing. J. Biol. Chem. 271: 10188–10193.

    Article  CAS  PubMed  Google Scholar 

  39. Shah M, Foreman DM, Ferguson MWJ. (1995) Neutralisation of TGF1 and TGF2 or exogenous addition of TGF3 to cutaneous rat wounds reduces scarring. J. Cell Sci. 108: 985–1002.

    PubMed  CAS  Google Scholar 

  40. Welsh MP, Odland GF, Clark RAF. (1990) Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J. Cell. Biol. 110: 133–145.

    Article  Google Scholar 

  41. Ignotz RA, Massague J. (1986) Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into extracellular matrix. J. Biol. Chem. 261: 4337–4340.

    PubMed  CAS  Google Scholar 

  42. Roberts AB, Sporn MB, Assoian RK, et al. (1986) Transforming growth factor β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation. Proc. Natl. Acad. Sci. USA 83: 4167–4171.

    Article  CAS  PubMed  Google Scholar 

  43. Schäffer M, Barbul A. (1998) Lymphocyte function in wound healing and following injury. Br. J. Surgery 85: 444–460.

    Article  Google Scholar 

  44. Pollock RE, Babcock GF, Romsdahl MM, Nishioka K. (1984) Surgical stress-mediated suppression of murine natural killer cell cytotoxicity. Cancer Res. 44: 3888–3891.

    PubMed  CAS  Google Scholar 

  45. Blazar BA, Rodrick ML, O’Mahony JB, Wood JJ, Bessey PQ, Wilmore DW, Mannick JA. (1986) Suppression of natural killer-cell function in humans following thermal and traumatic injury. J. Clin. Immunol. 6: 26–36.

    Article  CAS  PubMed  Google Scholar 

  46. DiPietro LA. (1995) Wound healing: the role of the macrophage and other immune cells. Shock 4: 233–240.

    Article  CAS  PubMed  Google Scholar 

  47. Espevik T, Figari IS, Shalaby MR, Lackides GA, Lewis GD, Shepard HM, Palladino MA. (1987) Inhibition of cytokine production by cyclosporin A and transforming growth factor β. J. Exp. Med. 166: 571–576.

    Article  CAS  PubMed  Google Scholar 

  48. Roberts AB. (1995) Transforming growth factor-β: activity and efficacy in animal models of wound healing. Wound Repair Regen. 3: 408–418.

    Article  CAS  PubMed  Google Scholar 

  49. O’Kane S, Ferguson MW. (1997) Transforming growth factor βs and wound healing. Int. J. Biochem. Cell Biol. 29: 63–78.

    Article  PubMed  Google Scholar 

  50. Sidhu GS, Thaloor D, Singh AK, Raghunath PN, Maheshwari RK. (1996) Enhanced biosynthesis of extracellular matrix proteins and TGF1 by polyinosinic-polycytidylic acid during cutaneous wound healing in vivo. J. Cell Physiol. 169: 108–114.

    Article  CAS  PubMed  Google Scholar 

  51. Ghayur T, Banerjee S, Hugunin M, et al. (1997) Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386: 619–623.

    Article  CAS  PubMed  Google Scholar 

  52. Gu Y, Kuida K, Tsutsui H, et al. (1997) Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275: 206–209.

    Article  CAS  PubMed  Google Scholar 

  53. Nakamura K, Okamura H, Wada M, Nagata K, Tamura T. (1989) Endotoxin-induced serum factor that stimulates γ interferon production. Infect. Immunol. 57: 590–595.

    CAS  Google Scholar 

  54. Kohno K, Kataoka J, Ohtsuki T, et al. (1997) IFN-γ-inducing factor (IGIF) is a co-stimulatory factor on the activation of Th1 but not Th2 cells and exerts its effects independently of IL-12. J. Immunol. 158: 1541–1550.

    PubMed  CAS  Google Scholar 

  55. Robinson D, Shibuya K, Mui A, et al. (1997) IGIF does not drive Th1 development but synergizes with IL-12 for interferon-γ production and activates IRAK and NFκB. Immunity 7: 571–581.

    Article  CAS  PubMed  Google Scholar 

  56. Puren AJ, Fantuzzi G, Gu Y, Su MS, Dinarello CA. (1998) Interleukin-18 (IFN γ-inducing factor) induces IL-8 and IL-1β via TNF alpha production from non-CD14+ human blood mononuclear cells. J. Clin. Invest. 101: 711–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kremer L, Dupre L, Wolowczuk I, Locht C. (1999) In vivo immunomodulation following intradermal injection with DNA encoding IL-18. J. Immunol. 163: 3226–3231.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nicole Kolb for her excellent technical assistance. We gratefully acknowledge Dr. Martin Kock for his help regarding the animal experiments. This work was supported by a grant of the Adolf Messer-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Frank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kämpfer, H., Paulukat, J., Mühl, H. et al. Lack of Interferon-γ Production Despite the Presence of Interleukin-18 During Cutaneous Wound Healing. Mol Med 6, 1016–1027 (2000). https://doi.org/10.1007/BF03402053

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402053

Keywords

Navigation