Skip to main content

Advertisement

Log in

Differential Regulation of Functional Gene Clusters in Overt Coronary Artery Disease in a Transgenic Atherosclerosis-hypertensive Rat Rodel

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Human acute coronary syndrome refers to the spectrum of clinical manifestations of overt coronary artery (CAD) disease characterized by atherosclerotic plaque destabilization and resultant myocardial injury. Typically studied as distinct pathologies, emerging pathogenic paradigms implicate multiple processes beyond thrombosis and ischemic cell injury respectively, with significant pathway overlap involving inflammation, apoptosis, matrix degradation, and oxidative stress. However, all these pathways have also been implicated in still-quiescent coronary plaque progression, thus making it harder to pinpoint the turnkey events leading to overt-CAD. Analysis of transcription profiles could identify a working framework of pathogenesis distinguishing overt-CAD.

Materials and Methods

We investigated the transcription profile associated with overt-coronary artery disease (CAD), in contrast to quiescent-CAD and attenuated, quiescent-CAD using the Tg53 transgenic atherosclerosis-hypertensive rat model, which exhibits end-stage coronary heart disease simulating human acute coronary syndromes. Using a rat-specific known-gene oligonucleotide array, twice corroborated transcription profiles from four individual Tg53 rats exhibiting overt-CAD were analyzed and contrasted to transcription profiles of age-matched Tg53 rats with quiescent-CAD (pooled n = 4) and attenuated, quiescent-CAD (pooled n = 4).

Results

Tg53 male rats with overt-CAD exhibited distinct transcription profiles compared with both quiescent-CAD control groups. Functional gene cluster analysis detects upregulation of genes involved in inflammation (interleukin-1, interleukin-18, FcγII receptor, thyrotropin releasing hormone), matrix balance (membrane type metalloproteinase, TIMP-1, lysyl oxidase), oxidized LDL entry (endothelial oxLDL receptor), which contrast deinduced gene clusters involved in angiogenesis, proliferation, metabolism, ion transport and adrenergic receptors.

Conclusions

The data demonstrate that transcriptionally mediated events distinguish the onset of overt-CAD and identify a first list of putative “turnkey” genes. This altered molecular framework implies an altered “hardwiring” which a priori would require multifaceted, targeted intervention-currently not implemented to date. Although more studies are necessary, early concordance with current pathogenic paradigms of human coronary plaque destabilization and post-ischemic myocardial response provides translational significance to observations and hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Libby P, Geng YJ, Sukhova GK, et al. (1997) Molecular determinants of atherosclerotic plaque vulnerability. Ann. N.Y. Acad. Sci. 811: 134–142.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou J, Chew M, Ravn HB, Falk E. (1999) Plaque pathology and coronary thrombosis in the pathogenesis of acute coronary syndromes. Scan. J. Clin. Lab. Invest. 230: 3–11.

    Article  CAS  Google Scholar 

  3. Delager-Pedersen S, Pederson EM, Ringgaard S, Falk E. (1999) In: Fuster V, (ed.) The Vulnerable Atherosclerotic Plaque. Futura, NY, pp. 1–23.

  4. Frangogiannis NG, Smith CW, Entman ML. (2002) The inflammatory response in myocardial infarction. Cardiovasc. Res. 53: 31–47.

    Article  CAS  PubMed  Google Scholar 

  5. Virmani R, Kolodgie FD, Burke AP, et al. (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20: 1262–1275.

    Article  CAS  PubMed  Google Scholar 

  6. Glagov S, Rowley DA, Kohut RI. (1961) Atherosclerosis of human aorta and its coronary and renal arteries. Arch. Pathol. 72: 82–95.

    Google Scholar 

  7. Herrera VLM, Makarides SC, Xie HX, et al. (1999) Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Nat. Med. 5: 1383–1389.

    Article  CAS  PubMed  Google Scholar 

  8. Herrera VLM, Didishvili T, Lopez LV, et al. (2001) Hypertension exacerbates coronary artery disease in transgenic hyper-lipidemic Dahl salt-sensitive hypertensive rats. Mol. Med. 7: 831–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lyn D, Liu X, Bennett NA, Emmett NL. (2000) Gene expression profile in mouse myocardium after ischemia. Physiol. Genomics 2: 93–100.

    Article  CAS  PubMed  Google Scholar 

  10. Gilles C, Polette M, Piette J, et al. (1996) High level of MT-MMP expression is associated with invasiveness of cervical cancer cells. Int. J. Cancer 65: 209–213.

    Article  CAS  PubMed  Google Scholar 

  11. Jin L, Yuan RQ, Fuchs A, et al. (1997) Expression of interleukin-1beta in human breast carcinoma. Cancer 80: 421–434.

    Article  CAS  PubMed  Google Scholar 

  12. Apte RN, Dvorkin T, Song X, et al. (2000) Opposing effects of IL-1 alpha and IL-1 beta on malignancy patterns. Tumor cell-associated IL-1 alpha potentiates anti-tumor immune responses and tumor regression, whereas IL-1 beta potentiates invasiveness. Adv. Exp. Med. Biol. 479: 277–288.

    Article  CAS  PubMed  Google Scholar 

  13. Belkin AM, Akimov SS, Zaritskaya LS. (2001) Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. J. Biol. Chem. 276: 18415–18422.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshikawa T, Tsuburaya A, Kobayashi O, et al. (2001) Intratumoral concentrations of tissue inhibitor of matrix metalloproteinase 1 in patients with gastric carcinoma: a new biomarker for invasion and its impact on survival. Cancer 91: 1739–1744.

    Article  CAS  PubMed  Google Scholar 

  15. Kirschman DA, Seftor EA, Nieva DR, et al. (1999) Differentially expressed genes associated with the metastatic phenotype in breast cancer. Breast Cancer Res. Treat. 55: 127–136.

    Article  Google Scholar 

  16. Lazarus HM, Cruikshank WW, Narashimhan N, et al. (1995) Induction of human monocyte motility by lysyl oxidase. Matrix Biol 14: 727–731.

    Article  CAS  PubMed  Google Scholar 

  17. Lee CK, Klopp RG, Weindruch R, Prolla TA. (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285: 1390–1394.

    Article  CAS  PubMed  Google Scholar 

  18. Fabunmi RP, Sukhova GK, Sugiyama S, Libby P. (1998) Expression of tissue inhibitor of metalloproteinases-3 in human atheroma and regulation in lesion-associated cells: a potential protective mechanism in plaque stability. Circ. Res. 83: 270–278.

    Article  CAS  PubMed  Google Scholar 

  19. Rouis M, Adamy C, Duverger N, et al. (1999) Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E-deficient mice. Circulation 100: 533–540.

    Article  CAS  PubMed  Google Scholar 

  20. Noji Y, Kajinami K, Kawashiri MA, et al. (2001) Circulating matrix metalloproteinases and their inhibitors in premature coronary atherosclerosis. Clin. Chem. Lab. Med. 39: 380–384.

    Article  CAS  PubMed  Google Scholar 

  21. Coussens LM, Fingleton B, Matrisian LM. (2002). Matrix metalloproteinases inhibitors and cancer: trials and tribulations. Science 295: 2387–2392.

    Article  CAS  PubMed  Google Scholar 

  22. Csiszar K. (2001) Lysyl oxidases: a novel multifunctional amine oxidase family. Prog. Nucleic Acid Res. Mol. Biol. 70: 1–32.

    Article  CAS  PubMed  Google Scholar 

  23. Shi ZX, Xu W, Mergner WJ, et al. (1996) Localization of thyrotropin-releasing hormone mRNA expression in the rat heart by in situ hybridization histochemistry. Pathobiology 64: 314–319.

    Article  CAS  PubMed  Google Scholar 

  24. Perez Castro C, Penalva R, Paez Pereda M, et al. (1999) Early activation of thyrotropin-releasing-hormone and prolactin plays a critical role during a T cell-dependent immune response. Endocrinology 140: 690–697.

    Article  CAS  PubMed  Google Scholar 

  25. Koshida H, Kotake Y. (1993) Thyrotropin-releasing hormone enhances the superoxide anion production of rabbit peritoneal macrophages stimulated with N-formyl-methionyl-leucyl-phenylalanine and opsonized zymosan. Life Sci. 53: 725–731.

    Article  CAS  PubMed  Google Scholar 

  26. Ratcliffe NR, Kennedy SM, Morganelli PM. (2001) Immunocytochemical detection of Fc-gamma receptors in human atherosclerotic lesions. Immunol. Let. 77: 169–174.

    Article  CAS  Google Scholar 

  27. Zebrack JS, Anderson JL, Maycock CA, et al. (2002) Usefulness of high-sensitivity C-reactive protein in predicting long-term risk of death or acute myocardial infarction in patients with unstable or stable angina pectoris or acute myocardial infarction. Am. J. Cardiol. 89: 145–149.

    Article  CAS  PubMed  Google Scholar 

  28. Chi M, Tridandapani S, Zhong W, et al. (2002) C-reactive protein induces signaling through Fc-gamma RIIa on HL-60 granulocytes. J. Immunol. 168: 1413–1418.

    Article  CAS  PubMed  Google Scholar 

  29. Dinarello CA. (1999) Interleukin-18. Methods 19: 121–132.

    Article  CAS  PubMed  Google Scholar 

  30. Grutkoski PS, D’Amico R, Ayala A, Simms HH. (1999) Il-1 beta stimulation induces paracrine regulation of PMN function and apoptosis. Shock 12: 373–381.

    Article  CAS  PubMed  Google Scholar 

  31. Leung BP, Culshaw S, Gracie JA, et al. (2001) A role for IL-18 in neutrophil activation. J. Immunol. 167: 2879–2886.

    Article  CAS  PubMed  Google Scholar 

  32. Ogura T, Ueda H, Hosohara K, et al. (2001) Interleukin-18 stimulates hematopoietic cytokine and growth factor formation and augments circulating granulocytes in mice. Blood 98: 2101–2107.

    Article  CAS  PubMed  Google Scholar 

  33. Mallat Z, Corbaz A, Scoazec A, et al. (2001) Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104: 1598–1603.

    Article  CAS  PubMed  Google Scholar 

  34. Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA. (2002) Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β. Proc. Natl. Acad. Sci. 98: 2871–2876.

    Article  Google Scholar 

  35. Feng Y, Yang JH, Huang H, et al. (1999) Transcriptional profile of mechanically induced genes in human vascular smooth muscle cells. Circ. Res. 85: 1118–1123.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge excellent technical assistance of Kimberly Zander and Sarah T. Cruz. This work was supported in part by a grant from the NIH National Heart, Lung, and Blood Institute (HL 62857) and by a grant-in-aid from the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria L. M. Herrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera, V.L.M., Didishvili, T., Lopez, L.V. et al. Differential Regulation of Functional Gene Clusters in Overt Coronary Artery Disease in a Transgenic Atherosclerosis-hypertensive Rat Rodel. Mol Med 8, 367–375 (2002). https://doi.org/10.1007/BF03402017

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402017

Keywords

Navigation