Skip to main content
Log in

Hemostasis Imbalance in Experimental Hypertension

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The rat model of chronic intoxication by NG-nitro-l-arginine methyl ester (l-NAME) induces severe systemic arterial hypertension and progressive ischemic lesions in the central nervous system and kidneys. We investigated the possible molecular basis of these thrombotic events.

Methods and Results

Administration of l-NAME increased plasma markers of thrombin generation, thrombin-antithrombin complexes, and soluble glycoprotein V, measured by specific ELISA. Thrombin generation in vivo was associated with ex vivo platelet desensitization to adenosine 5′-diphosphate and collagen-induced aggregation. In the aortic layers and renal arterioles, tissue factor mRNA (semi-quantitative RT-PCR) and activity (coagulation assay) were increased. In contrast, tissue factor activity was not modified in glomeruli. In parallel, an impairment of the fibrinolytic system was demonstrated by an increase in plasma levels and arterial secretion of plasminogen activator inhibitor-1. In the arterial wall, plasminogen activator inhibtor-1 mRNA was significantly increased. Moreover, antifibrinolytic activity, studied by fibrin reverse zymography, was increased whereas all tissue-plasminogen activator activity secreted by the hypertensive arterial wall was detected as complexes with its specific inhibitor. In animals treated with the angiotensin-converting enzyme (ACE) inhibitor Zofenil, all of these parameters remained at control levels.

Conclusions

These results indicate that chronic blockade of nitric oxide production in rats results in enhancement of blood markers of thrombin generation associated with tissue factor induction and impairment of fibrinolysis in the vascular wall, which may contribute to the thrombotic complications associated with hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kannel WB. (2000) Elevated systolic blood pressure as a cardiovascular risk factor. Am. J. Cardiol. 85: 251–255.

    Article  CAS  PubMed  Google Scholar 

  2. Fuster V, Badimon L, Badimon JJ, Chesebro JH. (1992) The pathogenesis of coronary artery disease and the acute coronary syndromes. N. Engl. J. Med. 326: 242–250.

    Article  CAS  PubMed  Google Scholar 

  3. Pessina AC, Serena L, Semplicini A. (1996) Hypertension, coronary artery and cerebrovascular diseases in the population. Has epidemiology changed in the last decades? Clin. Exp. Hypertens. 18: 363–370.

    Article  CAS  PubMed  Google Scholar 

  4. Touboul PJ, Elbaz A, Koller C, et al. (2000) Common carotid artery intima-media thickness and brain infarction: the Etude du Profil Genetique de l’infarctus Cerebral (GENIC) case-control study. The GENIC Investigators. Circulation 102: 313–318.

    Article  CAS  PubMed  Google Scholar 

  5. Arnal JF, Warin L, Michel JB. (1992) Determinants of aortic cyclic guanosine monophosphate in hypertension induced by chronic inhibition of nitric oxide synthase. J. Clin. Invest. 90: 647–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baylis C, Mitruka B, Deng A. (1992) Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J. Clin. Invest. 90: 278–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blot S, Arnal JF, Xu Y, Gray F, Michel JB. (1994) Spinal cord infarcts during long-term inhibition of nitric oxide synthase in rats. Stroke 25: 1666–1673.

    Article  CAS  PubMed  Google Scholar 

  8. Henrion D, Dowell FJ, Levy BI, Michel JB. (1996) In vitro alteration of aortic vascular reactivity in chronic L-NAME induced hypertension. Hypertension 28: 361–368.

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez W, Fontaine V, Pueyo ME, et al. (2000) Molecular plasticity of vascular wall during N(G)-nitro-L-arginine methyl ester-induced hypertension: modulation of proinflammatory signals. Hypertension 36: 103–109.

    Article  CAS  PubMed  Google Scholar 

  10. Katoh M, Egashira K, Mitsui T, Chishima S, Takeshita A, Narita H. (2000) Angiotensin-converting enzyme inhibitor prevents plasminogen activator inhibitor-1 expression in a rat model with cardiovascular remodeling induced by chronic inhibition of nitric oxide synthesis. J. Mol. Cell. Cardiol. 32: 73–83.

    Article  CAS  PubMed  Google Scholar 

  11. Luvara G, Pueyo M, Philippe M, et al. (1998) Chronic blockade of nitric oxide synthase activity induces pro-inflammatory phenotype in the arterial wall. Prevention by angiotensin II antagonism. Arterioscler. Thromb. Vasc. Res. 18: 1408–1416.

    Article  CAS  Google Scholar 

  12. Usui M, Egashira K, Kitamoto S, et al. (1999) Pathogenic role of oxidative stress in vascular angiotensin-converting enzyme activation in long-term blockade of nitric oxide synthesis in rats. Hypertension 34: 546–551.

    Article  CAS  PubMed  Google Scholar 

  13. Michel JB, Xu Y, Blot S, Philippe M, Chatellier G. (1996) Improved survival in rats administered NG-nitro l-arginine methyl ester due to converting enzyme inhibition. J. Cardiovasc. Pharmacol. 28: 142–148.

    Article  CAS  PubMed  Google Scholar 

  14. Tomiyama H, Kimura Y, Mitsuhashi H, et al. (1998) Relationship between endothelial function and fibrinolysis in early hypertension. Hypertension 31: 321–327.

    Article  CAS  PubMed  Google Scholar 

  15. Ruf W, Edgington TS. (1994) Structural biology of tissue factor, the initiator of thrombogenesis in vivo. FASEB J. 8: 385–390.

    Article  CAS  PubMed  Google Scholar 

  16. Mackman N. (1995) Regulation of the tissue factor gene. FASEB J. 9: 883–889.

    Article  CAS  PubMed  Google Scholar 

  17. Ravanat C, Freund M, Mangin P, et al. (2000) GPV is a marker of in vivo platelet activation—study in a rat thrombosis model. Thromb. Haemost. 83: 327–333.

    Article  CAS  PubMed  Google Scholar 

  18. De Prost D, Le Floch V, Kanfer A. (1985) Quantitative assessment of procoagulant activity in isolated rat glomeruli. Kidney Int. 28: 566–568.

    Article  PubMed  Google Scholar 

  19. Chatziantoniou C, Pauti MD, Pinet F, Promeneur D, Dussaule JC, Ardaillou R. (1996) Regulation of renin release is impaired after nitric oxide inhibition. Kidney Int. 49: 626–633.

    Article  CAS  PubMed  Google Scholar 

  20. Battle T, Arnal JF, Challah M, Michel JB. (1994) Selective isolation of rat aortic wall layers and their cell types in culture—application to converting enzyme activity measurement. Tissue Cell 26: 943–955.

    Article  CAS  PubMed  Google Scholar 

  21. Caen J, Larrieu MJ, Samama M. (1975) L’expansion Scientifique Française. In L’hémostase. Paris; 313.

  22. Gaussem P, Graihle P, Anglés-Cano E. (1993) Sodium dodecyl sulfate-induced dissociation of complexes between human tissue plasminogen activator and its specific inhibitor. J. Biol. Chem. 268: 12150–12155.

    PubMed  CAS  Google Scholar 

  23. Darblade B, Batkai S, Caussé E, et al. (2001) Failure of l-nitroarginine to inhibit the activity of aortic inducible nitric oxide synthase. J. Vasc. Res. 38: 266–275.

    Article  CAS  PubMed  Google Scholar 

  24. Pollock DM, Polakowski JS, Divish BJ, Opgenorth TJ. (1993) Angiotensin blockade reverses hypertension during long-term nitric oxide synthase inhibition. Hypertension 21: 660–666.

    Article  CAS  PubMed  Google Scholar 

  25. Freedman JE, Loscalzo J, Barnard MR, Alpert C, Keaney JF, Michelson AD. (1997) Nitric oxide released from activated platelets inhibits platelet recruitment. J. Clin. Invest. 100: 350–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Emerson M, Momi S, Paul W, Alberti PF, Page C, Gresele P. (1999) Endogenous nitric oxide acts as a natural antithrombotic agent in vivo by inhibiting platelet aggregation in the pulmonary vasculature. Thromb. Haemost. 81: 961–966.

    Article  CAS  PubMed  Google Scholar 

  27. Luft FC, Mervaala E, Muller DN, et al. (1999) Hypertension-induced end-organ damage: a new transgenic approach to an old problem. Hypertension 33: 212–218.

    Article  CAS  PubMed  Google Scholar 

  28. Taubman MB, Marmur JD, Rosenfield CL, Guha A, Nichtberger S, Nemerson Y. (1993) Agonist-mediated tissue factor expression in cultured vascular smooth muscle cells. Role of Ca2+ mobilization and protein kinase C activation. J. Clin. Invest. 91: 547–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Müller DN, Mervaala EMA, Dechend R, et al. (2000) Angiotensin II (AT1) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. Am. J. Pathol. 157: 111–122.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kitamoto S, Egashira K, Kataoka C, et al. (2000) Increased activity of nuclear factor-kappa participates in cardiovascular remodeling induced by chronic inhibition of nitric oxide synthesis in rats. Circulation 102: 806–812.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Loscalzo J. (2000) Regulation of tissue factor expression in human microvascular endothelial cells by nitric oxide. Circulation 101: 2144–2148.

    Article  CAS  PubMed  Google Scholar 

  32. Corseaux D, Le Tourneau T, Six I, et al. (1998) Enhanced monocyte tissue factor response after experimental balloon angioplasty in hypercholesterolemic rabbit: inhibition with dietary l-arginine. Circulation 98: 1776–1782.

    Article  CAS  PubMed  Google Scholar 

  33. Broze GJJ. (1995) Tissue factor pathway inhibitor. Thromb. Haemost. 74: 90–93.

    PubMed  CAS  Google Scholar 

  34. Sandset PM, Bonnie J, Warn-Cramer BJ, Rao VM, Maki SL, Rapaport SI. (1991) Depletion of extrinsic pathway inhibitor (EPI) sensitizes rabbits to disseminated intravascular coagulation induced with tissue factor: evidence supporting a physiological role for EPI as a natural anticoagulant. Proc. Natl. Acad. Sci. U.S.A. 88: 708–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nishimura H, Tsuji H, Masuda H, et al. (1997) Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thromb. Haemost. 77: 1189–1195.

    Article  CAS  PubMed  Google Scholar 

  36. Erdem Y, Usalan C, Haznedaroglu IC, et al. (1999) Effects of angiotensin converting enzyme and angiotensin II receptor inhibition on impaired fibrinolysis in systemic hypertension. Am. J. Hypertens. 12: 1071–1076.

    Article  CAS  PubMed  Google Scholar 

  37. Ranadive SA, Chen AX, Serajuddin AT. (1992) Relative lipophilicities and structural-pharmacological considerations of various ACE inhibitors. Pharm. Res. 9: 1480–1486.

    Article  CAS  PubMed  Google Scholar 

  38. Li P, Ferrario CM, Brosnihan KB. (1998) Losartan inhibits thromboxane A-2-induced platelet aggregation vascular constriction in spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 32: 198–205.

    Article  CAS  PubMed  Google Scholar 

  39. Levy PJ, Yunis C, Owen J, Brosnihan B, Smith R, Ferrarion CM. (2000) Inhibition of platelet aggregability by losartan in essential hypertension. Am. J. Cardiol. 86: 1188–1192.

    Article  CAS  PubMed  Google Scholar 

  40. Li P, Fukuhara M, Diz DI, Ferrario CM, Brosnihan KB. (2000) Novel angiotensin II AT(1) receptor antagonist irbesartan prevents thromboxane A(2)-induced vasoconstriction in canine coronary arteries and human platelet aggregation. J. Pharmacol. Exp. Ther. 292: 238–246.

    PubMed  CAS  Google Scholar 

  41. Soejima H, Ogawa H, Yasue H, et al. (1999) Angiotensin-converting enzyme inhibition reduces monocyte chemoattractant protein-1 and tissue factor levels in patients with myocardial infarction. J. Am. Coll. Cardiol. 34: 983–988.

    Article  CAS  PubMed  Google Scholar 

  42. Poli KA, Tofler GH, Larson MG, et al. (2000) Association of blood pressure with fibrinolytic potential in the Framingham offspring population. Circulation 101: 264–269.

    Article  CAS  PubMed  Google Scholar 

  43. Lottermoser K, Weisser B, Hertfelder HJ, Wostmann B, Vetter H, Dusing R. (1998) Antihypertensive drug treatment and fibrinolytic function. Am. J. Hypertens. 11: 378–384.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Menarini (Florence, Italy) and by INSERM. D.C. was supported by the Society of Nephrology and V.F. by the French Society of Hypertension. We thank Pierre-Louis Tharaux and Christos Chatziantoniou for their assistance with the isolation of renal arterioles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Ollivier.

Additional information

D.C. and V.O. contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corseaux, D., Ollivier, V., Fontaine, V. et al. Hemostasis Imbalance in Experimental Hypertension. Mol Med 8, 169–178 (2002). https://doi.org/10.1007/BF03402009

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402009

Keywords

Navigation