Skip to main content

Advertisement

Log in

Proteasome Inhibitors Prevent the Degradation of Familial Alzheimer’s Disease-Linked Presenilin 1 and Potentiate Aβ42 Recovery from Human Cells

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Several lines of evidence suggest that most of the early-onset forms of familial Alzheimer’s disease (FAD) are due to inherited mutations borne by a chromosome 14–encoded protein, presenilin 1 (PS1). This is likely related to an increased production of amyloid β-peptide (A β)42, one of the main components of the extracellular deposits called senile plaques that invade human cortical areas during the disease.

Materials and Methods

We set up stably transfected HEK293 cells overexpressing wild-type (wt) and various FAD-linked mutated PS1. By Western blot analysis, we examined the influence of specific proteasome inhibitors on PS1-like immunoreactivities. Furthermore, by means of metabolic labeling and immunoprecipitation with A β40 and A β42-directed specific antibodies, we assessed the effect of the inhibitors on the production of A βs by wt and mutated PS1-expressing cells transiently transfected with βAPP751.

Results

We show that two distinct proteasome inhibitors, Z-IE(Ot-Bu)A-Leucinal and lactacystin, increase in a time- and dose-dependent manner the immunoreactivities of both wt and mutated PS1. Furthermore, we demonstrate that PS1 is polyubiquitinated in these cells. Other inhibitors, ineffective on the proteasome, fail to protect wt and mutated PS1-like immunoreactivities. We also establish that the FAD-linked mutations of PS1 trigger a selective increased formation of Aβ42 as reflected by higher Aβ42 over total Aβ ratios when compared with wtPS1-expressing cells. Interestingly, this augmentation was further amplified by proteasome inhibitors in cells expressing mutated but not wtPS1.

Conclusion

Altogether, our data indicate that PS1 undergoes polyubiquitination in HEK293 cells and that the proteasome contributes to the degradation of wt and FAD-linked PS1, thereby directly influencing the Aβ production in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lemere CA, Lopera F, Kosik KS, et al. (1996) The E280A presenilin 1 Alzheimer mutation produces increased Aβ42 deposition and severe cerebellar pathology. Nat. Med. 2: 1146–1150.

    Article  CAS  PubMed  Google Scholar 

  2. Mann DMA, Iwatsubo T, Cairns NJ, et al. (1997) Amyloid β protein (Aβ) deposition in chromosome 14-linked Alzheimer’s disease: Predominance of Aβ42(43). Ann. Neurol. 40: 149–156.

    Article  Google Scholar 

  3. Mann DMA, Iwatsubo T, Nochlin D, Sumi SM, Levy-Lahad E, Bird TD. (1997) Amyloid (Aβ) deposition in Chromosome 1-linked Alzheimer’s disease: The Volga German family. Ann. Neurol. 41: 52–57.

    Article  CAS  PubMed  Google Scholar 

  4. Borchelt DR, Thinakaran G, Eckman CB, et al. (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/1-40 in vitro and in vivo. Neuron 17: 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  5. Gearing M, Tigges J, Mori H, Mirra SS. (1996) Aβ40 is a major form of β-amyloid in human primates. Neurobiol. Aging 17: 903–908.

    Article  CAS  PubMed  Google Scholar 

  6. Xia W, Zhang J, Kholodenko D, et al. (1997) Enhanced production and oligomerization of the 42-residue amyloid β-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J. Biol. Chem. 272: 7977–7982.

    Article  CAS  PubMed  Google Scholar 

  7. Tomita T, Maruyama K, Saido TC, et al. (1997) The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid β protein ending at the 42nd (or 43rd) residue. Proc. Natl. Acad. Sci. USA 94: 2025–2030.

    Article  CAS  PubMed  Google Scholar 

  8. Duff K, Eckman C, Zehr C, et al. (1996) Increased amyloid-β42(43) in brains expressing mutant presenilin 1. Nature 383: 710–713.

    Article  CAS  PubMed  Google Scholar 

  9. Ancolio K, Marambaud P, Dauch P, Checler F. (1997) α-secretase-derived product of β amyloid precursor protein is decreased by presenilin 1 mutations linked to familial Alzheimer’s disease. J. Neurochem. 69: 2495–2499.

    Google Scholar 

  10. Kovacs DM, Fausett HJ, Page KJ, et al. (1996) Alzheimer-associated presenilins 1 and 2: Neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat. Med. 2: 224–229.

    Article  CAS  PubMed  Google Scholar 

  11. Cook DG, Sung JC, Golde TE, et al. (1996) Expression and analysis of presenilin 1 in a human neuronal system: Localization in cell bodies and dendrites. Proc. Natl. Acad. Sei. USA 93: 9223–9228.

    Article  CAS  Google Scholar 

  12. Walter J, Capell A, Grünberg J, et al. (1996) The Alzheimer’s disease-associated presenilins are differentially phosphorylated proteins located predominantly within the endoplasmic reticulum. Mol. Med. 2: 673–691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Dewji NN, Singer SJ. (1996) Specific transcellular binding between membrane proteins crucial to Alzheimer disease. Proc. Natl. Acad. Sci. USA 93: 12575–12580.

    Article  CAS  PubMed  Google Scholar 

  14. Weidemann A, Paliga K, Dürrwang U, et al. (1997) Formation of stable complexes between two Alzheimer’s disease gene products: Presenilin-2 and β-amyloid precursor protein. Nat. Med. 3: 328–332.

    Article  CAS  PubMed  Google Scholar 

  15. Marambaud P, Chevallier N, Barelli H, Wilk S, Checler F. (1997) Proteasome contributes to the α-secretase pathway of amyloid precursor protein in human cells. J. Neurochem. 68: 698–703.

    Article  CAS  PubMed  Google Scholar 

  16. Marambaud P, Lopez-Perez E, Wilk S, Checler F. (1997) Constitutive and protein kinase C-regulated secretary cleavage of Alzheimer’s β amyloid precursor protein: Different control of early and late events by the proteasome. J. Neurochem. 69: 2500–2505.

    Article  CAS  PubMed  Google Scholar 

  17. Marambaud P, Wilk S, Checler F. (1996) Protein kinase A phosphorylation of the proteasome: A contribution to the α-secretase pathway in human cells. J. Neurochem. 67: 2616–2619.

    Article  CAS  PubMed  Google Scholar 

  18. Dauch P, Champigny G, Ricci J-E, Checler F. (1997) Lack of effect of presenilin1, βAPP and their Alzheimer’s disease-related mutated forms on xenopus oocytes membrane current. Neurosci. Lett. 221: 1–4.

    Article  Google Scholar 

  19. Thinakaran G, Borchelt DR, Lee MK, et al. (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17: 181–190.

    Article  CAS  PubMed  Google Scholar 

  20. Chevallier N, Jiracek J, Vincent B, et al. (1997) Examination of the role of endopeptidase 3.4.24.15 in Aβ secretion by human transfected cells. Br. J. Pharmacol. 121: 556–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barelli H, Lebeau A, Vizzavona J, et al. (1997) Characterization of new polyclonal antibodies specific for 40 and 42 aminoacid-long amyloid β peptides: Their use to examine the cell biology of presenilins and the immunohistochemistry of sporadic Alzheimer’s disease and cerebral amyloid angiopathy cases. Mol. Med. 3: 695–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fenteany G, Standaert R, Lane WS, Choi S, Corey EJ, Schreiber SL. (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268: 726–731.

    Article  CAS  PubMed  Google Scholar 

  23. Pereira ME, Yu B, Wilk S. (1992) Enzymatic changes of the bovine pituitary multicatalytic proteinase complex induced by magnesium ions. Arch. Biochem. Biophys. 294: 1–8.

    Article  CAS  PubMed  Google Scholar 

  24. Ward RV, Davis JB, Gray CW, et al. (1996) Pre-senilin-1 is processed into two major cleavage products in neuronal cell lines. Neurodegeneration 5: 293–298.

    Article  CAS  PubMed  Google Scholar 

  25. De Strooper B, Beullens M, Contreras B, et al. (1997) Phosphorylation, subcellular localization, and membrane orientation of the Alzheimer’s disease-associated presenilins. J. Biol. Chem. 272: 3590–3598.

    Article  PubMed  Google Scholar 

  26. Seeger M, Nordstedt C, Petanceska S, et al. (1997) Evidence for phosphorylation and oligomeric assembly of presenilin 1. Proc. Natl. Acad. Sci. USA 94: 5090–5094.

    Article  CAS  PubMed  Google Scholar 

  27. Walter J, Grünberg J, Capell A, et al. (1997) Proteolytic processing of the Alzheimer disease associated presenilin-1 generates an in vivo substrate for protein kinase C. Proc. Natl. Acad. Sci. USA 94: 5349–5354.

    Article  CAS  PubMed  Google Scholar 

  28. Varhavski, A. (1997) The ubiquitin system. Trends Neurosci. 22: 383–387.

    Google Scholar 

  29. Kim TW, Pettingeil WH, Hallmark OG, Moir RD, Wasco W, Tanzi RE. (1997) Endoproteolytic cleavage and proteasomal degradation of presenilin 2 in transfected cells. J. Biol. Chem. 272: 11006–11010.

    Article  CAS  PubMed  Google Scholar 

  30. Mengual E, Aritzi P, Rodrigo J, Gimenez-Amaya JM, Castano JG. (1996) Immunohistochemical distribution and electron microscopic subcellular localization of the proteasome in the rat CNS. J. Neurosci. 16: 6331–6341.

    Article  CAS  PubMed  Google Scholar 

  31. Palmer A, Rivett AJ, Thomson S, et al. (1996) Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol. Biochem. J. 316: 401–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oda K, Ikehara Y, Omura S. (1996) Lactacystin, an inhibitor of the proteasome, blocks the degradation of a mutant precursor of glycosylphos-phatidyl inositol-linked protein in a pre-Golgi compartment. Biochem. Biophys. Res. Commun. 219: 800–805.

    Article  CAS  PubMed  Google Scholar 

  33. Werner ED, Brodsky JL, McCracken AA. (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: An unconventional route to a familiar fate. Proc. Natl. Acad. Sci. USA 93: 13797–13801.

    Article  CAS  PubMed  Google Scholar 

  34. Fuller SJ, Storey E, Li QX, Smith I, Beyreuther K, Master CL. (1995) Intracellular production of βA4 amyloid of Alzheimer’s disease: Modulation by phosphoramidon and lack of coupling to the secretion of the amyloid precursor protein. Biochemistry 34: 8091–8098.

    Article  CAS  PubMed  Google Scholar 

  35. Haass C. (1996) Presenile because of presenilin: The presenilin genes and early onset Alzheimer’s disease. Curr. Opin. Neurol. 9: 254–259.

    Article  CAS  PubMed  Google Scholar 

  36. Hardy J, Allsop D. (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 12: 383–388.

    Article  CAS  PubMed  Google Scholar 

  37. Checler F. (1998) Presenilins. Mol. Neurobiol. (in press).

  38. Checler F. (1995) Processing of the β-amyloid precursor protein and its regulation in Alzheimer’s disease. J. Neurochem. 65: 1431–1444.

    Article  CAS  PubMed  Google Scholar 

  39. Rivett AJ. (1989) The multicatalytic proteinase. Multiple proteolytic activities. J. Biol. Chem. 264: 12215–12219.

    PubMed  CAS  Google Scholar 

  40. Rechsteiner M, Hoffman L, Dubiel W. (1993) The multicatalytic and 26S proteases. J. Biol. Chem. 268: 6065–6068.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. M. Savage and B. Greenberg (Cephalon, West Chester, PA) for generously providing us with 207 antibody and Dr. B. De Strooper (Center for Human Genetics, Leuven, Belgium) for the generous gift of the antibody (B14) directed toward the N-terminal part of PS1. We sincerely thank Dr. Sherwin Wilk for the generous gift of Z-IE(Ot-Bu)A-Leucinal and Z-L-Leucinal. We sincerely thank Drs. G. Thinakaran and S. Sisodia for generously providing us with αPS1Loop antibody and ΔE9-PS1 cDNA. We also thank J. Kervella for expert secretarial assistance, and Franck Aguila for the artwork. This work was supported by the Institut National de la Santé et de la Recherche Médicale and the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Checler.

Additional information

Communicated by P. Chambon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marambaud, P., Ancolio, K., Lopez-Perez, E. et al. Proteasome Inhibitors Prevent the Degradation of Familial Alzheimer’s Disease-Linked Presenilin 1 and Potentiate Aβ42 Recovery from Human Cells. Mol Med 4, 147–157 (1998). https://doi.org/10.1007/BF03401912

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401912

Keywords

Navigation