Skip to main content

Advertisement

Log in

BAX Contributes to Apoptotic-Like Death Following Neonatal Hypoxia-Ischemia: Evidence for Distinct Apoptosis Pathways

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Hypoxic-ischemic (H-I) injury to the neonatal brain has been shown to result in rapid cell death with features of acute excitotoxicity/necrosis as well as prominent delayed cell death with features of apoptosis such as marked caspase-3 activation. BAX, a pro-apoptotic molecule, has been shown to be required for apoptotic neuronal cell death during normal development but the contribution of endogenous BAX in cell death pathways following H-I injury to the developing or adult brain has not been studied.

Materials and Methods

Bax +/+, +/−, and −/− mice at post-natal day 7 were subjected to unilateral carotid ligation followed by exposure to 45 minutes of 8% oxygen. At different timepoints following H-I, brain tissue was studied by conventional histology, immunohistochemistry, immunofluorescence, Western blotting, and enzymatic assay to determine the extent and type of cell injury as well as the amount of caspase activation.

Results

We found that bax −/− mice had significantly less (38%) hippocampal tissue loss than mice expressing bax. Some of the remaining cell death in bax −/− mice, however, still had features of apoptosis including evidence of nuclear shrinkage and caspase-3 activation. Though bax −/− mice had significantly decreased caspase-3 activation as compared to bax expressing mice following H-I, the density of cells with activated caspase-8 in the CA3 region of the hippocampus did not differ between bax +/− and bax −/− mice.

Conclusions

These findings demonstrate that endogenous BAX plays a role in regulating cell death in the central nervous system (CNS) following neonatal H-I, a model of cerebral palsy. In addition, while BAX appears to modulate the caspase-3 activation following neonatal H-I, caspase-8 which is linked to death receptor activation, may contribute to apoptotic-like neuronal death in a BAX-independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Oppenheim RW. (1991) Cell death during the development of the nervous system. Annu. Rev. Neurosci. 14: 453–501.

    Article  CAS  PubMed  Google Scholar 

  2. Nijhawan D, Honarpour N, Wang XD. (2000) Apoptosis in neural development and disease. Ann. Rev. Neurosci. 23: 73–87.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrer I, Tortosa A, Macaya A, et al. (1994) Evidence of nuclear DNA fragmentation following hypoxia-ischemia in the infant rat brain, and transient forebrain ischemia in the adult gerbil. Brain Path. 4: 115–122.

    Article  CAS  Google Scholar 

  4. Mehmet H, Yue X, Squier MV, et al. (1994) Increased apoptosis in the cingulate sulcus of newborn piglets following transient hypoxia-ischaemia is related to the degree of high energy phosphate depletion during the insult. Neurosci. Lett. 181: 121–125.

    Article  CAS  PubMed  Google Scholar 

  5. Hill IE, MacManus JP, Rasquinha I, Tuor UI. (1995) DNA fragmentation indicative of apoptosis following unilateral cerebral hypoxia-ischemia in the neonatal rat. Brain Res. 676: 398–403.

    Article  CAS  PubMed  Google Scholar 

  6. Sidhu S, Tuor UI, Del Bigio MR. (1997) Nuclear condensation and fragmentation following cerebral hypoxia-ischemia occurs more frequently in immature than older rats. Neurosci. Lett. 223: 129–132.

    Article  CAS  PubMed  Google Scholar 

  7. Silverstein FS, Barks JD, Hagan P, Liu XH, Ivacko J, Szaflarski J. (1997a) Cytokines and perinatal brain injury. Neurochem. Int. 30: 375–383.

    Article  CAS  PubMed  Google Scholar 

  8. Pulera MR, Adams LM, Liu HT, et al. (1998) Apoptosis in a neonatal rat model of cerebral hypoxia-ischemia. Stroke 29: 2622–2629.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng Y, Deshmukh M, D’Costa A, et al. (1998) Caspase inhibitor affords neuroprotection with delayed adminstration in a rat model of neonatal hypoxic-ischemic brain injury. J. Clin. Invest. 101: 1992–1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taylor DL, Edwards AD, Mehmet H. (1999) Oxidative metabolism, apoptosis and perinatal brain injury. Brain Path. 9: 93–117.

    Article  CAS  Google Scholar 

  11. Holtzman DM, Deshmukh M. (1997) Caspases: A treatment target for neurodegenerative diseases? Nature Med. 3: 954–955.

    Article  CAS  PubMed  Google Scholar 

  12. Chan SL, Mattson MP. (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J. Neurosci. Res. 58: 167–190.

    Article  CAS  PubMed  Google Scholar 

  13. Gross A, McDonnell JM, Korsmeyer SJ. (1999) Blc-2 family members and the mitochondria in apoptosis. Genes and Development 13: 1899–1911.

    Article  CAS  PubMed  Google Scholar 

  14. Oltvai ZN, Milliman CL, Korsmeyer SJ. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog bax, that accelerates programed cell death. Cell 74: 609–619.

    Article  CAS  PubMed  Google Scholar 

  15. Sedlak TW, Oltvai ZN, Yang E, et al. (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. USA 92: 7834–7838.

    Article  CAS  PubMed  Google Scholar 

  16. Deckwerth TL, Elliott JL, Knudson CM, Johnson EMJ, Snider WD, Korsmeyer SJ. (1996) BAX is required for neuronal death after trophic deprivation and during development. Neuron 17: 1–20.

    Article  Google Scholar 

  17. Miller TM, Moulder KL, Knudson CM, et al. (1997) Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J. Cell Biol. 139: 205–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. White FA, Keller-Peck CR, Knudson CM, Korsmeyer SJ, Snider WD. (1998) Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J. Neurosci. 18: 1428–1439.

    Article  CAS  PubMed  Google Scholar 

  19. Doughty ML, De Jager PL, Korsmeyer SJ, Heintz N. (2000) Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J. Neurosci. 20: 3687–3694.

    Article  CAS  PubMed  Google Scholar 

  20. Chong MJ, Murray MR, Gosink EC, et al. (2000) Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc. Natl. Acad. Sci. USA 97: 889–894.

    Article  CAS  PubMed  Google Scholar 

  21. Vanucci RC. (1990) Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr. Res. 27: 317–326.

    Article  Google Scholar 

  22. Volpe JJ (1995) Neurology of the newborn (W. B. Saunders, Philadelphia).

    Google Scholar 

  23. Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM. (2000) BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp. Neurol. 166: 99–114.

    Article  CAS  PubMed  Google Scholar 

  24. Levine S. (1960) Anoxic-ischemic encephalopathy in rats. Am. J. Pathol. 36: 1–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Rice JE, Vannucci RC, Brierley JB. (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 9: 131–141.

    Article  PubMed  Google Scholar 

  26. Ikonomidou C, Mosinger JL, Salles KS, Labruyere J, Olney JW. (1989) Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J. Neurosci. 9: 2809–2818.

    Article  CAS  PubMed  Google Scholar 

  27. Nakajima W, Ishida A, Lange MS, et al. (2000) Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci 20: 7994–8004.

    Article  CAS  PubMed  Google Scholar 

  28. Han BH, DeMattos RB, Dugan LL, et al. (2001) Clusterin contributes to caspase-3-independent brain injury following neonatal hypoxia-ischemia. Nat Med 7: 338–343.

    Article  CAS  PubMed  Google Scholar 

  29. Parsadanian AS, Cheng Y, Keller-Peck CR, Holtzman DM, Snider WD. (1998) Bcl-XL is an anti-apoptotic regulator for postnatal CNS neurons. J. Neurosci. 18: 1009–1019.

    Article  CAS  PubMed  Google Scholar 

  30. Lendon CL, Han BH, Salimi K, et al. (2000) No effect of apolipoprotein E on neuronal cell death due to excitotoxic and apoptotic agents in vitro and neonatal hypoxic ischaemia in vivo. Eur. J. Neurosci. 12: 2235–2242.

    Article  CAS  PubMed  Google Scholar 

  31. Ferriero DM, Holtzman DM, Black SM, Sheldon RA. (1996) Mice without neuronal nitric oxide synthase have less injury after perinatal hypoxia-ischemia. Neurobiol. Dis. 3: 64–71.

    Article  CAS  PubMed  Google Scholar 

  32. Knudson CM, Tung KSK, Tourtellotte WG, Brown GAJ, Korsmeyer SJ. (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270: 96–98.

    Article  CAS  PubMed  Google Scholar 

  33. Johnston MV. (1983) Neurotransmitter alterations in a model of perinatal hypoxic-ischemic brain injury. Ann. Neurol. 13: 511–518.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng Y, Gidday JM, Yan Q, Shah AR, Holtzman DM. (1997) Marked age-dependent neuroprotection by BDNF against neonatal hypoxic-ischemic brain injury. Ann. Neurol. 41: 521–529.

    Article  CAS  PubMed  Google Scholar 

  35. Franklin KBJ, Paxinos G (1997) The Mouse Brain in Stereotaxic Coordinates (Academic Press, Inc., San Diego).

    Google Scholar 

  36. Han BH, D’Costa A, Back SA, et al. (2000) BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol. Dis. 7: 38–53.

    Article  CAS  PubMed  Google Scholar 

  37. Han BH, Holtzman DM. (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J. Neurosci. 20: 5775–5781.

    Article  CAS  PubMed  Google Scholar 

  38. Srinivasan A, Roth KA, Sayers RO, et al. (1998) In Situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death & Diff. 5: 1004–1016.

    Article  CAS  Google Scholar 

  39. Velier JJ, Ellison JA, Kikly KK, Spera PA, Barone FC, Feuerstein GZ. (1999) Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J. Neurosci. 19: 5932–5941.

    Article  CAS  PubMed  Google Scholar 

  40. Holtzman DM, Bayney RM, Li Y, et al. (1992) Dysregulation of gene expression in mouse trisomy 16, an animal model of Down syndrome. EMBO J. 11: 619–627.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Selznick LA, Holtzman DM, Han BH, et al. (1999) In Situ Immunodetection of neuronal caspase-3 activation in Alzheimer disease. J. Neuropath. Exp. Neurol. 58: 1020–1026.

    Article  CAS  PubMed  Google Scholar 

  42. Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ. (2001) Early neurodegeneration after hypoxiaischemia in neonatal rat is necrosis while delayed neuronal death is apoptotis. Neurobiol. Dis. 8: 207–219.

    Article  CAS  PubMed  Google Scholar 

  43. Northington FJ, Ferriero DM, Flock DL, Martin LJ. (2001) Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J. Neurosci. 21: 1931–1938.

    Article  CAS  PubMed  Google Scholar 

  44. Han BH, D’Costa A, Back SA, et al. (2000) BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol. Dis. 7: 38–53.

    Article  CAS  PubMed  Google Scholar 

  45. Deshmukh M, Johnson EM. (1998) Evidence of a novel event during neuronal death—development of competence-to-die in response to cytoplasmic cytochrome C. Neuron 21: 695–705.

    Article  CAS  PubMed  Google Scholar 

  46. Putcha GV, Deshmukh M, Johnson J. E. M. (1999) Bax translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, bcl-2, and caspases. J. Neurosci. 19: 7476–7485.

    Article  CAS  PubMed  Google Scholar 

  47. Srinivasula SM, Ahmad M, Fernadnes-Alnemri T, Litwack G, Alnemri ES. (1996) Molecular ordering of the Fas-apoptotic pathway: The fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl. Acad. Sci. USA 93: 14486–14491.

    Article  CAS  PubMed  Google Scholar 

  48. Muzio M, Chinnaiyan AM, Kischkel FC, et al. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas-APO-1) death-inducing signaling complex. Cell 85: 817–827.

    Article  CAS  PubMed  Google Scholar 

  49. Stennicke HR, Jurgensmeier JM, Shin H, et al. (1998) Procaspase-3 is a major physiological target of caspase-8. J. Biol. Chem. 273: 27084–27090.

    Article  CAS  PubMed  Google Scholar 

  50. Felderhoff-Mueser U, Taylor DL, Greenwood K, et al. (2000) Fas/CD95/APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathol. 10: 17–29.

    Article  CAS  PubMed  Google Scholar 

  51. Martinou J-C, Dubois-Dauphin M, Staple JK, et al. (1994) Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13: 1017–1030.

    Article  CAS  PubMed  Google Scholar 

  52. Chen J, Graham SH, Nakayama M, et al. (1997) Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J. Cerebral Blood Flow Metab. 17: 2–10.

    Article  CAS  Google Scholar 

  53. Minami M, Jin KL, Li W, Nagayama T, Henshall DC, Simon RP. (2000) Bcl-w expression is increased in brain regions affected by focal cerebral ischemia in the rat. Neurosci. Lett. 279: 193–195.

    Article  CAS  PubMed  Google Scholar 

  54. Yan C, Chen J, Chen D, et al. (2000) Overexpression of the cell death suppressor Bcl-w in ischemic brain: implications for a neuroprotective role via the mitochondrial pathway. J. Cerebral Blood Flow Metab. 20: 620–630.

    Article  CAS  Google Scholar 

  55. Krajewski S, Mai JK, Krajewska M, Sikorska M, Mossakowski MJ, Reed JC. (1995) Upregulation of Bax protein levels in neurons following cerebral ischemia. J. Neurosci. 15: 6364–6376.

    Article  CAS  PubMed  Google Scholar 

  56. Hara A, Iwai T, Niwa M, et al. (1996) Immunohistochemical detection of Bax and Bcl-2 proteins in gerbil hippocampus following transient forebrain ischemia. Brain Res. 711: 249–253.

    Article  CAS  PubMed  Google Scholar 

  57. MacGibbon GA, Lawlor PA, Sirimanne ES, et al. (1997) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus. Brain Res. 750: 223–234.

    Article  CAS  PubMed  Google Scholar 

  58. Cao G, Minami M, Pei W, et al. (2001) Intracellular Bax translocation after transient cerebral ischemia: Implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J. Cereb. Blood Flow & Metab. 21: 321–333.

    Article  CAS  Google Scholar 

  59. Kuida K, Zheng TS, Na SQ, et al. (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368–372.

    Article  CAS  PubMed  Google Scholar 

  60. Hakem R, Hakem A, Duncan GS, et al. (1998) Differential requirement fo caspase 9 in apoptotic pathways in vivo. Cell 94: 339–352.

    Article  CAS  PubMed  Google Scholar 

  61. Hara H, Firedlander RM, Gagliardini V, et al. (1997) Inhibition of interleukin 1β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl. Acad. Sci. USA 94: 2007–2012.

    Article  CAS  PubMed  Google Scholar 

  62. Chen J, Nagayama T, Jin K, et al. (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J. Neurosci. 18: 4914–4928.

    Article  CAS  PubMed  Google Scholar 

  63. Rickman DW, Nacke RE, Rickman CB. (1999) Characterization of the cell death promoter, Bad, in the developing rat retina and forebrain. Brain Res. 115: 41–47.

    Article  CAS  Google Scholar 

  64. Shimohama S, Fujimoto S, Sumida Y, Tanino H. (1998) Differential Expression of rat brain Bcl-2 family proteins in development and aging. Biochem. Biophys. Res. Comm. 252: 92–96.

    Article  CAS  PubMed  Google Scholar 

  65. Han Z, Bhalla K, Pantazis P, Hendreickson EA, Wyche JH. (1999) Cif (cytochrome c effluxing-inducing factor) activity is regulates by Bcl-2 and caspases and correlates with the activation of Bid. Mol. Cell. Biol. 19: 1381–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhai D, Huang X, Han X, Yang F. (2000) Characterization of Bid-induced cytochrome c release from mitochondria and liposomes. FEBS Lett 472: 293–296.

    Article  CAS  PubMed  Google Scholar 

  67. Luo X, Budihardjo I, Zou H, Slaughter C, Wang XD. (1998) BID, a BCL2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490.

    Article  CAS  PubMed  Google Scholar 

  68. Li HL, Zhu H, Xu CJ, Yuan JY. (1998) Cleavage of BID by caspase-8 mediates the mitochondrial damage in the FAS pathway of apoptosis. Cell 94: 491–501.

    Article  CAS  PubMed  Google Scholar 

  69. Kuwana T, Smith JJ, Muzio M, Dixit, V., Newmeyer DD, Kornbluth S. (1998) Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J. Biol. Chem. 273: 16589–16594.

    Article  CAS  PubMed  Google Scholar 

  70. Gross A, Yin XM, Wang K, et al. (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-X-L prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274: 1156–1163.

    Article  CAS  PubMed  Google Scholar 

  71. Yin XM, Wang K, Gross A, et al. (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400: 886–891.

    Article  CAS  PubMed  Google Scholar 

  72. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803–815.

    Article  CAS  PubMed  Google Scholar 

  73. Medema JP, Scaffidi C, Kischkel FC, et al. (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16: 2794–2804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bertin J, Armstrong RC, Ottilie S, et al. (1997) Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc. Natl. Acad. Sci. USA 94: 1172–1176.

    Article  CAS  PubMed  Google Scholar 

  75. Ashkenazi A, Dixit VM. (1998) Death receptors: signaling and modulation. Science 281: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  76. Budihardjo I, Oliver H, Lutter M, Luo X, Wang XD. (1999) Biochemical pathways of caspase activation during apoptosis. Ann. Rev. Cell Devel. Biol. 15: 269–290.

    Article  CAS  Google Scholar 

  77. Ruffolo SC, Breckenridge DG, Nguyen M, et al. (2000) BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death & Different. 7: 1101–1108.

    Article  CAS  Google Scholar 

  78. Wei MC, Zong WX, Cheng EH, et al. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Budd SL, Tenneti L, Lishnak T, Lipton SA. (2000) Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc. Natl. Acad. Sci. USA 97: 6161–6166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant NS35902. The authors thank Eugene Johnson, Mohanish Deshmukh, and Jeff Gidday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Holtzman MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, M.E., Han, B.H., Choi, J. et al. BAX Contributes to Apoptotic-Like Death Following Neonatal Hypoxia-Ischemia: Evidence for Distinct Apoptosis Pathways. Mol Med 7, 644–655 (2001). https://doi.org/10.1007/BF03401871

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401871

Keywords

Navigation