Skip to main content
Log in

Characterization of a Novel Hemoglobin-Glutathione Adduct That Is Elevated in Diabetic Patients

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Typically, a diagnosis of diabetes mellitus is based on elevated circulating blood glucose levels. In an attempt to discover additional markers for the disease and predictors of prognosis, we undertook the characterization of HbA1d3 in diabetic and normal patients.

Material and Methods

PolyCAT A cation exchange chromatography and liquid chromatography-mass spectroscopy was utilized to separate the α- and β-globin chains of HbA1d3 and characterize their presence in normal and diabetic patients.

Results

We report the characterization of HbA1d3 as a glutathionylated, minor hemoglobin subfraction that occurs in higher levels in diabetic patients (2.26 ± 0.29 %) than in normal individuals (1.21 ± 0.14%, p < 0.001). The α-chain spectrum displayed a molecular ion of m/z 15126 Da, which is consistent with the predicted native mass of the HbA0 α-globin chain. By contrast, the mass spectrum of the β-chain showed a mass excess of 307 Da (m/z = 16173 Da) versus that of the native HbA0 β-globin chain (m/z = 15866 Da). The native molecular weight of the modified β-globin chain HbA0 was regenerated by treatment of HbA1d3 with dithiothreitol, consistent with a glutathionylated adduct.

Conclusions

We propose that HbA1d3 (HbSSG) forms normally in vivo, and may provide a useful marker of oxidative stress in diabetes mellitus and potentially other pathologic situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dryer DG, Dunn JA, Thorpe SR, et al. (1993). Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J. Clin. Invest. 91: 2463–2469.

    Article  Google Scholar 

  2. Ledl F, Schleicher E. (1990). The Maillard reaction in food and in human body-New results in chemistry, biochemistry and medicine. Angew. Chem. Int. Ed. Engl. 6: 565–594.

    Article  Google Scholar 

  3. Brownlee M, Cerami A, Vlassara H. (1998). Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med. 318: 1315–1321.

    Google Scholar 

  4. Bucala R, Cerami A. (1992). Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv. Pharmacol. 23: 1–34.

    Article  CAS  PubMed  Google Scholar 

  5. Rahbar S. (1968). Hemoglobin H disease in two Iranian families: Clin. Chim. Acta. 22: 296–299.

    Article  CAS  PubMed  Google Scholar 

  6. Koenig RJ, Blobstein SH, Cerami A. (1977). Structure of carbohydrate of hemoglobin AIc. J. Biol. Chem. 252: 2992–2997.

    PubMed  CAS  Google Scholar 

  7. Makita Z, Vlassara H, Cerami A, Bucala R. (1992). Immunochemical detection of advanced glycosylation end products in vivo. J. Biol. Chem. 267: 5133–5138.

    PubMed  CAS  Google Scholar 

  8. Schleicher E, Wagner E, Nerlich AG. (1997). Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J. Clin. Invest. 99: 457–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Makita Z, Vlassara H, Rayfield E, et al. (1992). Hemoglobin-AGE: a circulating marker of advanced glycosylation. Science 258: 651–653.

    Article  CAS  PubMed  Google Scholar 

  10. Wolffenbuttel BH, Giordano D, Founds HW, Bucala R: (1996). Long-term assessment of glucose control by hemoglobin-AGE measurement. Lancet 347: 513–515.

    Article  CAS  PubMed  Google Scholar 

  11. Gandhi CR, Roy Chowdhury RD. (1979). Effect of diabetes mellitus on sialic acid & glutathione content of human erythrocytes of different ages. Indian J. Exp. Biol. 17: 585–587.

    PubMed  CAS  Google Scholar 

  12. Jain SK, McVie R. (1994). Effect of glycemic control, race (white versus black), and duration of diabetes on reduced glutathione content in erythrocytes of diabetic patients. Metabolism 43: 306–309.

    Article  CAS  PubMed  Google Scholar 

  13. Ciuchi E, Odetti P, Prando R. (1996). Relationship between glutathione and sorbitol concentrations in erythrocytes from diabetic patients: Metabolism 45: 611–613.

    Article  CAS  PubMed  Google Scholar 

  14. Murakami K, Kondo T, Ohtsuka Y, Fujiwara Y, Shimada M, Kawakami Y. (1989). Impairment of glutathione metabolism in erythrocytes from patients with diabetes mellitus. Metabolism 38: 753–758.

    Article  CAS  PubMed  Google Scholar 

  15. Murakami K. (1991). Glutathione metabolism in erythrocytes from patients with diabetes mellitus. Hokkaido Igaku Zasshi 66: 29–40.

    PubMed  CAS  Google Scholar 

  16. Blakytny R, Harding JJ. (1992). Glycation (non-enzymic glycosylation) inactivates glutathione reductase. Biochem J 288: 303–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Birchmeier W, Tuchschmid PE, Winterhalter KH. (1973). Comparison of human hemoglobin A carrying glutathione as a mixed disulfide with the naturally occurring human hemoglobin A. Biochemistry 12: 3667–3672.

    Article  CAS  PubMed  Google Scholar 

  18. Wodak SJ, De Coen JL, Edelstein SJ, Demarne H, Beuzard Y. (1986). Modification of human hemoglobin by glutathione. III. Perturbations of hemoglobin conformation analyzed by computer modeling. J. Biol. Chem. 261: 14717–14724.

    PubMed  CAS  Google Scholar 

  19. Garel MC, Domenget C, Caburi-Martin J, Prehu C, Galacteros F, Beuzard Y. (1986). Covalent binding of glutathione to hemoglobin. I. Inhibition of hemoglobin S polymerization. J. Biol. Chem. 261: 14707–14724.

    Google Scholar 

  20. Niketic V, Beslo D, Raicevic S, Sredic S, Stojkovic M. (1992). Glutathione adduct of hemoglobin (Hb ASSG) in hemolysates of patients on long-term antiepileptic therapy. Int. J. Biochem. 24: 503–507.

    Article  CAS  PubMed  Google Scholar 

  21. Al-Abed Y, Mitsuhashi T, Li H, et al. (1999). Inhibition of advanced glycation endproduct formation by acetaldehyde: role in the cardioprotective effect of ethanol. Proc. Natl. Acad. Sci. U.S.A. 96: 2385–2390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niwa T, Naito C, Mawjood AHM, Imai K. (2000). Increased glutathionyl hemoglobin in diabetes mellitus and hyperlipidemia demonstrated by liquid chromatography/electrospray ionization-mass spectrometry. Clin. Chem. 46: 82–88.

    PubMed  CAS  Google Scholar 

  23. Naito C, Kajita M, Niwa TJ. (1999). Determination of glutathionyl hemoglobin in hemodialysis patients using electrospray ionization liquid chromatography-mass spectrometry. Chromatogr. B 731: 121–124.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Al-Abed PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Abed, Y., VanPatten, S., Li, H. et al. Characterization of a Novel Hemoglobin-Glutathione Adduct That Is Elevated in Diabetic Patients. Mol Med 7, 619–623 (2001). https://doi.org/10.1007/BF03401868

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401868

Keywords

Navigation