Skip to main content
Log in

Basal Nucleotide Levels, Release, and Metabolism in Normal and Cystic Fibrosis Airways

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Cystic fibrosis (CF) is a syndrome caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene. Despite advances in our understanding of the molecular pathogenesis of CF, the link between CFTR gene mutations and the pathogenesis of CF lung disease remains poorly defined. CFTR has been assigned a number of putative functions that may contribute to innate airway defense, including the regulation of adenosine 5′-triphosphate (ATP) release into the extracellular environment. Because extracellular ATP and uridine 5′-triphosphate (UTP) may regulate airway mucociliary clearance via interaction with luminal P2Y2 receptors, the loss of CFTR-mediated nucleotide release could explain the defect in CF airway defense.

Materials and Methods

We tested the physiologic importance of CFTR-mediated nucleotide release in vivo by directly measuring levels of ATP and UTP in nasal airway surface liquid from normal and CF subjects. Because these basal nucleotide levels reflect the net activities of nucleotide release and metabolic pathways, we also measured constitutive rates of nucleotide release and metabolism on well-differentiated normal and CF airway cultures in vitro. The measurement of ATP release rates were paralleled by in vivo studies employing continuous nasal perfusion in normal and CF subjects. Finally, the regulation of ATP release by isoproterenol and methacholine-stimulated submucosal gland secretion was tested.

Results

These studies revealed that steady-state ATP and UTP levels were similar in normal (470 ± 131 nM and 37 ± 7 nM, respectively) and CF (911 ± 199 nM and 33 ± 12 nM, respectively) subjects. The rates of both ATP release and metabolism were also similar in normal and CF airway epithelia both in vitro and in vivo. Airway submucosal glands did not secrete nucleotides, but rather, secreted a soluble nucleotidase in response to cholinergic stimuli.

Conclusion

The concentration of ATP in airway surface liquid is in a range that is relevant for the activation of airway nucleotide receptors. However, despite this finding that suggests endogenous nucleotides may be important for the regulation of mucociliary clearance, our data do not support a role for CFTR in regulating extracellular nucleotide concentrations on airway surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson MP, Gregory RJ, Thompson S, et al. (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253: 202–205.

    Article  CAS  PubMed  Google Scholar 

  2. Bear CE, Li CH, Kartner N, et al. (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68: 809–818.

    Article  CAS  PubMed  Google Scholar 

  3. Stutts MJ, Canessa CM, Olsen JC, et al. (1995) CFTR as a cAMP-dependent regulator of sodium channels [see comments]. Science 269: 847–850.

    Article  CAS  PubMed  Google Scholar 

  4. Stutts MJ, Rossier BC, Boucher RC. (1997) Cystic fibrosis transmembrane conductance regulator inverts protein kinase A-mediated regulation of epithelial sodium channel single channel kinetics. J. Biol. Chem. 272: 14037–14040.

    Article  CAS  PubMed  Google Scholar 

  5. Boucher RC. (1994) Human airway ion transport. Part one. Am. J. Respir. Crit Care Med. 150: 271–281.

    Article  CAS  PubMed  Google Scholar 

  6. Boucher RC. (1994) Human airway ion transport. Part two. Am. J. Respir. Crit Care Med. 150: 581–593.

    Article  CAS  PubMed  Google Scholar 

  7. Reisin IL, Prat AG, Abraham EH, et al. (1994) The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J. Biol. Chem. 269: 20584–20591.

    PubMed  CAS  Google Scholar 

  8. Schwiebert EM, Egan ME, Hwang TH, et al. (1995) CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81: 1063–1073.

    Article  CAS  PubMed  Google Scholar 

  9. Prat AG, Reisin IL, Ausiello DA, Cantiello HF. (1996) Cellular ATP release by the cystic fibrosis transmembrane conductance regulator. Am. J. Physiol. 270: C538–C545.

    Article  CAS  PubMed  Google Scholar 

  10. Sugita M, Yue Y, Foskett JK. (1998) CFTR Cl-channel and CFTR-associated ATP channel: distinct pores regulated by common gates. EMBO J. 17: 898–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang Q, Mak D, Devidas S, et al. (1998) Cystic fibrosis transmembrane conductance regulator-associated ATP release is controlled by a chloride sensor. J. Cell Biol. 143: 645–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz ME, Lonigro AJ. (1998) Deformation-induced ATP release from red blood cells requires CFTR activity. Am. J. Physiol. 275: H1726–H1732.

    PubMed  CAS  Google Scholar 

  13. Cantiello HF, Jackson GR, Grosman CF, et al. (1998) Electrodiffusional ATP movement through the cystic fibrosis transmembrane conductance regulator. Am. J. Physiol. 274: C799–C809.

    Article  CAS  PubMed  Google Scholar 

  14. Taylor AL, Kudlow BA, Marrs KL, Gruenert DC, Guggino WB, Schwiebert EM. (1998) Bioluminescence detection of ATP release mechanisms in epithelia. Am. J. Physiol. 275: C1391–C1406.

    Article  CAS  PubMed  Google Scholar 

  15. Bennett WD, Olivier KN, Zeman KL, Hohneker KW, Boucher RC, Knowles MR. (1996) Effect of uridine 5′-triphosphate plus amiloride on mucociliary clearance in adult cystic fibrosis. Am. J. Respir. Crit. Care Med. 153: 1796–1801.

    Article  CAS  PubMed  Google Scholar 

  16. Olivier KN, Bennett WD, Hohneker KW, et al. (1996) Acute safety and effects on mucociliary clearance of aerosolized uridine 5′-triphosphate +/− amiloride in normal human adults. Am. J. Respir. Crit. Care Med. 154: 217–223.

    Article  CAS  PubMed  Google Scholar 

  17. Evans JH, Sanderson MJ. (1999) Intracellular calcium oscillations regulate ciliary beat frequency of airway epithelial cells. Cell Calcium 26: 103–110.

    Article  CAS  PubMed  Google Scholar 

  18. Korngreen A, Priel Z. (1996) Purinergic stimulation of rabbit ciliated airway epithelia: control by multiple calcium sources. J. Physiol. (Lond) 497(Pt 1): 53–66.

    Article  CAS  Google Scholar 

  19. Uzlaner N, Priel Z. (1999) Interplay between the NO pathway and elevated [Ca2+]i enhances ciliary activity in rabbit trachea. J. Physiol. (Lond) 516(Pt 1): 179–190.

    Article  CAS  Google Scholar 

  20. Knowles MR, Clarke LL, Boucher RC. (1991) Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis [see comments]. N. Engl. J. Med. 325: 533–538.

    Article  CAS  PubMed  Google Scholar 

  21. Stutts MJ, Fitz JG, Paradiso AM, Boucher RC. (1994) Multiple modes of regulation of airway epithelial chloride secretion by extracellular ATP. Am. J. Physiol. 267: C1442–C1451.

    Article  CAS  PubMed  Google Scholar 

  22. Lethem MI, Dowell ML, van Scott M. (1993). Nucleotide regulation of goblet cells in human airway epithelial explants: normal exocytosis in cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 9: 315–322.

    Article  CAS  PubMed  Google Scholar 

  23. Abdullah LH, Davis SW, Burch L, et al. (1996) P2u purinoceptor regulation of mucin secretion in SPOC1 cells, a goblet Cell line from the airways. Biochem. J. 316(Pt 3): 943–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abraham EH, Prat AG, Gerweck L, et al. (1993) The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc. Natl. Acad. Sci. USA 90: 312–316.

    Article  CAS  PubMed  Google Scholar 

  25. Watt WC, Lazarowski ER, Boucher RC. (1998) Cystic fibrosis transmembrane regulator-independent release of ATP. Its implications for the regulation of P2Y2 receptors in airway epithelia. J. Biol. Chem. 273: 14053–14058.

    Article  CAS  PubMed  Google Scholar 

  26. Reddy MM, Quinton PM, Haws C, et al. (1996) Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science 271: 1876–1879.

    Article  CAS  PubMed  Google Scholar 

  27. Grygorczyk R, Hanrahan JW. (1997) CFTR-independent ATP release from epithelial cells triggered by mechanical stimuli. Am. J. Physiol 272: C1058–C1066.

    Article  CAS  PubMed  Google Scholar 

  28. Grygorczyk R, Tabcharani JA, Hanrahan JW. (1996) CFTR channels expressed in CHO cells do not have detectable ATP conductance. J. Membr. Biol. 151: 139–148.

    Article  CAS  PubMed  Google Scholar 

  29. Li C, Ramjeesingh M, Bear CE. (1996) Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP channel. J. Biol. Chem. 271: 11623–11626.

    Article  CAS  PubMed  Google Scholar 

  30. Lazarowski ER, Harden TK. (1999) Quantitation of extracellular UTP using a sensitive enzymatic assay. Br. J. Pharmacol. 127: 1272–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lazarowski ER, Homolya L, Boucher RC, Harden TK. (1997) Direct demonstration of mechanically induced release of cellular UTP and its implication for uridine nucleotide receptor activation. J. Biol. Chem. 272: 24348–24354.

    Article  CAS  PubMed  Google Scholar 

  32. Kaulbach HC, White Mv, Igarashi Y, Hahn BK, Kaliner MA. (1993) Estimation of nasal epithelial lining fluid using urea as a marker. J. Allergy Clin. Immunol. 92: 457–465.

    Article  CAS  PubMed  Google Scholar 

  33. Matsui H, Randell SH, Peretti SW, Davis CW, Boucher RC. (1998) Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102: 1125–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hampp R. (1985) Luminometric method. In Bergmeyer J, Grossl M (eds.) Metabolites 2: Tri- and Dicarboxylic Acid, Purines, Pyrimidines and Derivatives, Coenzymes, Inorganic Compounds. VCH Publishers, Deerfield Beach, FL, pp. 370–379.

    Google Scholar 

  35. Burnstock G, Cocks T, Kasakov L, Wong HK. (1978) Direct evidence for ATP release from non-adrenergic, non-cholinergic (“purinergic”) nerves in the guinea-pig taenia coli and bladder. Eur. J. Pharmacol. 49: 145–149.

    Article  CAS  PubMed  Google Scholar 

  36. Kasakov L, Ellis J, Kirkpatrick K, Milner P, Burnstock G. (1988) Direct evidence for concomitant release of noradrenaline, adenosine 5′-triphosphate and neuropeptide Y from sympathetic nerve supplying the guinea-pig vas deferens. J. Auton. Nerv. Syst. 22: 75–82.

    Article  CAS  PubMed  Google Scholar 

  37. Hollins B, Ikeda SR. (1997) Heterologous expression of a P2x-purinoceptor in rat chromaffin cells detects vesicular ATP release. J. Neurophysiol. 78: 3069–3076.

    Article  CAS  PubMed  Google Scholar 

  38. Engelhardt JF, Yankaskas JR, Ernst SA, et al. (1992) Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat. Genet. 2: 240–248.

    Article  CAS  PubMed  Google Scholar 

  39. Picher M, Cote YP, Beliveau R, Potier M, Beaudoin AR. (1993) Demonstration of a novel type of ATP-diphosphohydrolase (EC 3.6.1.5) in the bovine lung. J. Biol. Chem. 268: 4699–4703.

    PubMed  CAS  Google Scholar 

  40. Plesner L. (1995) Ecto-ATPases: identities and functions. Int. Rev. Cytol. 158: 141–214.

    Article  CAS  PubMed  Google Scholar 

  41. Abraham EH, Okunieff P, Scala S, et al. (1997) Cystic fibrosis transmembrane conductance regulator and adenosine triphosphate [letter]. Science 275: 1324–1326.

    Article  CAS  PubMed  Google Scholar 

  42. Schwiebert EM. (1999) ABC transporter-facilitated ATP conductive transport. Am. J. Physiol. 276: C1–C8.

    Article  CAS  PubMed  Google Scholar 

  43. Devidas S, Guggino WB. (1997) The cystic fibrosis transmembrane conductance regulator and ATP. Curr. Opin. Cell Biol. 9: 547–552.

    Article  CAS  PubMed  Google Scholar 

  44. Cole P. (1982) Upper respiratory airflow. In: Proctor DF, Andersen I (eds.) The Nose: Upper Airway Physiology and the Atmospheric Environment. Elsevier Biomedical Press B.V., Amsterdam, pp. 163–189.

    Google Scholar 

  45. Knowles MR, Clarke LL, Boucher RC. (1992) Extracellular ATP and UTP induce chloride secretion in nasal epithelia of cystic fibrosis patients and normal subjects in vivo. Chest 101: 60S–63S.

    Article  CAS  PubMed  Google Scholar 

  46. Clarke LL, Harline MC, Otero MA, et al. (1999) Desensitization of P2Y2 receptor-activated transepithelial anion secretion. Am. J. Physiol. 276: C777–C787.

    Article  CAS  PubMed  Google Scholar 

  47. Strobel RS, Nagy AK, Knowles AF, Buegel J, Rosenberg MD. (1996) Chicken oviductal ecto-ATP-diphosphohydrolase. Purification and characterization. J. Biol. Chem. 271: 16323–16331.

    Article  CAS  PubMed  Google Scholar 

  48. Nagy AK, Knowles AF, Nagami GT. (1998) Molecular cloning of the chicken oviduct ecto-ATP-diphosphohydrolase. J. Biol. Chem. 273: 16043–16049.

    Article  CAS  PubMed  Google Scholar 

  49. Ronquist G, Brody I. (1985) The prostasome: its secretion and function in man. Biochim. Biophy. Acta 822: 203–218.

    Article  CAS  Google Scholar 

  50. Beaudoin AR, Vachereau A, Grondin G, St Jean P, Rosenberg MD, Strobel R. (1986) Microvesicular secretion, a mode of Cell secretion associated with the presence of an ATP-diphosphohydrolase. FEBS Lett. 203: 1–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cystic Fibrosis Foundation (CFF L543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott H. Donaldson M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donaldson, S.H., Lazarowski, E.R., Picher, M. et al. Basal Nucleotide Levels, Release, and Metabolism in Normal and Cystic Fibrosis Airways. Mol Med 6, 969–982 (2000). https://doi.org/10.1007/BF03401831

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401831

Keywords

Navigation