Skip to main content
Log in

In vitro Activity of Monoclonal and Recombinant Yeast Killer Toxin-like Antibodies Against Antibiotic-resistant Gram-positive Cocci

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Monoclonal (mAbKT) and recombinant single-chain (scFvKT) anti-idiotypic antibodies were produced to represent the internal image of a yeast killer toxin (KT) characterized by a wide spectrum of antimicrobial activity, including Gram-positive cocci. Pathogenic eukaryotic and prokaryotic microorganisms, such as Candida albicans, Pneumocystis carinii, and a multidrug-resistant strain of Mycobacterium tuberculosis, presenting specific, although yet undefined, KT-cell wall receptors (KTR), have proven to be killed in vitro by mAbKT and scFvKT. mAbKT and scFvKT exert a therapeutic effect in vivo in experimental models of candidiasis and pneumocystosis by mimicking the functional activity of protective antibodies naturally produced in humans against KTR of infecting microorganisms. The swelling tide of concern over increasing bacterial resistance to antibiotic drugs gives the impetus to develop new therapeutic compounds against microbial threat. Thus, the in vitro bactericidal activity of mAbKT and scFvKT against gram-positive, drug-resistant cocci of major epidemiologial interest was investigated.

Materials and Methods

mAbKT and scFvKT generated by hybridoma and DNA recombinant technology from the spleen lymphocytes of mice immunized with a KT-neutralizing monoclonal antibody (mAb KT4) were used in a conventional colony forming unit (CFU) assay to determine, from a qualitative point of view, their bactericidal activity against Staphylococcus aureus, S. haemolyticus, Enterococcus faecalis, E. faecium, and Streptococcus pneumoniae strains. These bacterial strains are characterized by different patterns of resistance to antibiotics, including methicillin, vancomycin, and penicillin.

Results

According to the experimental conditions adopted, no bacterial isolate proved to be resistant to the activity of mAbKT and scFvKT.

Conclusions

scFvKT exerted a microbicidal activity against multidrug resistant bacteria, which may represent the basis for the drug modeling of new antibiotics with broad antibacterial spectra to tackle the emergence of microbial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kunin CM. (1993) Resistance to antimicrobial drugs—a worldwide calamity. Ann. Int. Med. 118: 557–561.

    Article  CAS  PubMed  Google Scholar 

  2. Tomasz A. (1994) Multiple antibiotic-resistant pathogenic bacteria. A report on the Rockfeller University workshop. N. Engl. J. Med. 330: 1247–1251.

    Article  CAS  PubMed  Google Scholar 

  3. Gold HS, Moellering RC. (1996) Antimicrobial drug-resistance. N. Engl. J. Med. 335: 1445–1453.

    Article  CAS  PubMed  Google Scholar 

  4. Cohen ML. (1992) Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 257: 1050–1055.

    Article  CAS  PubMed  Google Scholar 

  5. Hawkey PM. (1998) Action against antibiotic resistance: no time to lose. Lancet 351: 1298–1299.

    Article  CAS  PubMed  Google Scholar 

  6. Spratt BG. (1996) Antibiotic resistance: counting the cost. Curr. Biol. 6: 1219–1221.

    Article  CAS  PubMed  Google Scholar 

  7. Biörkman J, Hughes D, Andersson DI. (1998) Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl. Acad. Sci. U.S.A. 95: 3949–3953.

    Article  Google Scholar 

  8. Polonelli L, Morace G. (1986) Reevaluation of the yeast killer phenomenon. J. Clin. Microbiol. 24: 866–869.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Polonelli L, Conti S, Gerloni M, et al. (1991) “Antibiobodies”: antibiotic-like anti-idiotypic antibodies. J. Med. Vet. Mycol. 29: 235–242.

    Article  CAS  PubMed  Google Scholar 

  10. Polonelli L, Lorenzini R, De Bernardis F, et al. (1993) Idiotypic vaccination: immunoprotection mediated by anti-idiotypic antibodies with antibiotic activity. Scan. J. Immunol. 37: 105–110.

    Article  CAS  Google Scholar 

  11. Polonelli L, De Bernardis F, Conti S, et al. (1994) Idiotypic intravaginal vaccination to protect against candidal vaginitis by secretory, yeast killer toxin-like antiidiotypic antibodies. J. Immunol. 152: 3175–3182.

    PubMed  CAS  Google Scholar 

  12. Polonelli L, Séguy N, Conti S, et al. (1997) Monoclonal yeast killer toxin-like candidacidal anti-idiotypic antibodies. Clin. Diagn. Lab. Immunol. 4: 142–146.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Magliani W, Conti S, De Bernardis F, et al. (1997) Therapeutic potential of antiidiotypic single chain antibodies with yeast killer toxin activity. Nature Biotechnol. 15: 155–158.

    Article  CAS  Google Scholar 

  14. Magliani W, Conti S, Gerloni M, Bertolotti D, Polonelli L. (1997) Yeast killer systems. Clin Microbiol Rev. 10: 369–400.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Conti S, Fanti F, Magliani W, et al. (1998) Mycobactericidal activity of human natural, monoclonal, and recombinant yeast killer toxin-like antibodies. J. Infect. Dis. 177: 807–811.

    Article  CAS  PubMed  Google Scholar 

  16. Séguy N, Polonelli L, Dei-Cas E, Cailliez JC. (1998) Perspectives in the control of Pneumocystis infections by using Pichia anomala killer toxinlike antiidiotypic antibodies. FEMS Immunol. Med. Microbiol. 22: 145–149.

    Article  PubMed  Google Scholar 

  17. Polonelli L, De Bernardis F, Conti S, et al. (1996) Human natural yeast killer toxin-like candidacidal antibodies. J. Immunol. 156: 1880–1885.

    PubMed  CAS  Google Scholar 

  18. Polonelli L, Morace G. (1987) Production and characterization of yeast killer toxin monoclonal antibodies. J. Clin. Microbiol. 25: 460–462.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Magliani W, Polonelli L, Conti S, et al. (1998) Neonatal mouse immunity against group B streptococcal infection by maternal vaccination with recombinant antiidiotypes. Nature Med. 4: 705–709.

    Article  CAS  PubMed  Google Scholar 

  20. Moellering RC. (1998) Introduction: problems with antimicrobial resistance in gram-positive cocci. Clin. Infect. Dis. 26: 1177–1178.

    Article  PubMed  Google Scholar 

  21. Centers for Disease Control and Prevention. (1997) Update: Staphylococcus aureus with reduced susceptibility to vancomycin—United States. MMWR 46: 813–815.

    Google Scholar 

  22. Hiramatsu K, Aritaka N, Hanaki H, et al. (1997) Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350: 1670–1673.

    Article  CAS  PubMed  Google Scholar 

  23. Sieradzki K, Roberts RB, Haber SW, Tomasz A. (1999) The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N. Engl. J. Med. 340: 517–523.

    Article  CAS  PubMed  Google Scholar 

  24. Schwalbe RS, Stapleton JT, Gilligan PH. (1987) Emergence of vancomycin resistance in coagulase-negative staphylococci. N. Engl. J. Med. 316: 927–931.

    Article  CAS  PubMed  Google Scholar 

  25. Veach LA, Pfaller MA, Barrett M, Koontz FP, Wenzel RP. (1990) Vancomycin resistance in Staphylococcus haemolyticus causing colonization and bloodstream infection. J. Clin. Microbiol. 28: 2064–2068.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Sieradzki K, Roberts RB, Serur D, Hargrave J, Tomasz A. (1998) Recurrent peritonitis in a patient on dialysis and prophylactic vancomycin. Lancet 351: 880–881.

    Article  CAS  PubMed  Google Scholar 

  27. McMurray LW, Kernodle DS, Barg N. (1990) Characterization of a widespread strain of methicillin-susceptible Staphylococcus aureus associated with nosocomial infections. J. Infect. Dis. 162: 759–762.

    Article  CAS  PubMed  Google Scholar 

  28. Murray BE. (1997) Vancomycin-resistant enterococci. Am. J. Med. 102: 284–293.

    Article  CAS  PubMed  Google Scholar 

  29. Moellering RC. (1998) Vancomycin-resistant enterococci. Clin. Infect. Dis. 26: 1196–1199.

    Article  PubMed  Google Scholar 

  30. Moellering RC. (1991) The enterococcus: a classic example of the impact of antimicrobial resistance on therapeutic options. J. Antimicrob. Chemother. 28: 1–12.

    Article  PubMed  Google Scholar 

  31. Dutka-Malen S, Blaimont B, Wauters G, Courvalin P. (1994) Emergence of high-level resistance to glycopeptides in Enterococcus gallinarum and Enterococcus casseliflavus. Antimicrob. Agents Chemother. 38: 1675–1677.

    Article  CAS  PubMed  Google Scholar 

  32. French G, Abdulla Y, Heathcock R, Poston S, Cameron J. (1992) Vancomycin resistance in south London. Lancet 339: 818–819.

    Article  CAS  PubMed  Google Scholar 

  33. Fontana R, Ligozzi M, Pedrotti C, Padovani EM, Cornaglia G. (1997) Vancomycin-resistant Bacillus circulans carrying the vanA gene responsible for vancomycin resistance in enterococci. Eur. J. Clin. Microbiol. Infect. Dis. 16: 473–474.

    Article  CAS  PubMed  Google Scholar 

  34. Poyart C, Pierre C, Quesne G, Pron B, Berche P, Trieu-Cuot P. (1997) Emergence of vancomycin resistance in the genus Streptococcus characterization of a vanB transferable determinant in Streptococcus bovis. Antimicrob. Agents Chemother. 41: 24–29.

    PubMed  CAS  Google Scholar 

  35. Tomasz A. (1997) Antibiotic resistance in Streptococcus pneumoniae. Clin. Infect. Dis. 24 (Suppl. 1): S85–88.

    Article  CAS  PubMed  Google Scholar 

  36. Novak R, Henriques B, Charpentier E, Normark S, Tuomanen E. (1999) Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature 399: 590–593.

    PubMed  CAS  Google Scholar 

  37. Boman HG. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13: 61–92.

    Article  CAS  PubMed  Google Scholar 

  38. Hancock RE. (1997) Peptide antibiotics. Lancet 349: 418–422.

    Article  CAS  PubMed  Google Scholar 

  39. Lehrer RI, Lichtenstein AK, Ganz T. (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11: 105–128.

    Article  CAS  PubMed  Google Scholar 

  40. Nicolas P, Mor A. (1994) Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol. 49: 277–304.

    Article  Google Scholar 

Download references

Acknowledgments

Ministero della Sanità, Istituto Superiore di Sanità, Programma Nazionale di Ricerca sull’AIDS—1998, Accordo di Collaborazione Scientifica n. 50B.32, and Ministero dell’Università e della Ricerca Scientifica e Tecnologica, Programmi di Ricerca Scientifica di Interesse Nazionale—1999.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Polonelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, S., Magliani, W., Arseni, S. et al. In vitro Activity of Monoclonal and Recombinant Yeast Killer Toxin-like Antibodies Against Antibiotic-resistant Gram-positive Cocci. Mol Med 6, 613–619 (2000). https://doi.org/10.1007/BF03401799

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401799

Keywords

Navigation