Skip to main content

Advertisement

Log in

Chlamydia trachomatis Mouse Pneumonitis Lung Infection in IL-18 and IL-12 Knockout Mice: IL-12 Is Dominant over IL-18 for Protective Immunity

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Interferon (IFN)-γ is a key to protective immunity against a variety of intracellular bacterial infections, including Chlamydia trachomatis. Interleukin (IL)-18, a recently identified Th1 cytokine, together with IL-12 is a strong stimulator for IFN-γ production. We investigated the relative roles of IL-18 and IL-12 in protective immunity to C. trachomatis mouse pneumonitis (MoPn) infection using gene knockout (KO) and wild-type (WT) mice.

Materials and Methods

Mice were intranasally infected with C. trachomatis MoPn and protective immunity was assessed among groups of mice by daily body weight changes, lung growth of MoPn, and histopathological appearances at day 10 postinfection. The corresponding immune responses for each group of mice at the same postinfection time point were evaluated by measuring antigen-specific antibody isotype responses and cytokine profiles.

Results

Our results showed that IL-18 deficiency had little or no influence on clearance of MoPn from the lung, although KO mice exhibited slightly more severe inflammatory reactions in lung tissues, as well as reduced systemic and local IFN-γ production, compared with WT mice. Results with IL-18 KO mice were in sharp contrast to those observed with IL-12 KO mice that showed substantially reduced clearance of MoPn from the lungs, substantial reductions of antigen-specific systemic and lung IFN-γ production, decreased ratio of MoPn-specific immunoglobulin G (IgG)2a/IgG1, and severe pathological changes in the lung with extensive polymorphonuclear, instead of mononuclear, cell infiltration. Exogenous IL-12 or IL-18 was able to increase IFN-γ production in IL-18 KO mice; whereas, only exogenous IL-12, but not IL-18, enhanced IFN-γ production in IL-12 KO mice. Caspase-1 is the key protease for activation of IL-18 precursor into the bioactive form, and caspase-1 KO mice also displayed similar bacterial clearance and body weight loss to that in WT mice at early stages of MoPn infection. This further confirmed that IL-18 was not essential for host defense against chlamydia infection. Conclusions: These results suggest that IL-12, rather than IL-18, plays the dominant role in the development of protective immunity against chlamydia lung infection, although both cytokines are involved in the in vivo regulation of IFN-γ production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johansson M, Schon K, Ward M, Lycke N. (1997) Genital tract infection with Chlamydia trachomatis fails to induce protective immunity in gamma interferon receptor-deficient mice despite a strong local immunoglobulin A response. Infect. Immun. 65: 1032–1044.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Perry LL, Feilzer K, Caldwell HD. (1997) Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-γ-dependent and independent pathways. J. Immunol. 158: 3344–3352.

    PubMed  CAS  Google Scholar 

  3. Huang J, Wang MD, Lenz S, Gao D, Kaltenboeck B. (1999) IL-12 administered during Chlamydia psittaci lung infection in mice confers immediate and long-term protection and reduce macrophage inflammatory protein-2 level and neutrophil infiltration in lung tissue. J. Immunol. 162: 2217–2226.

    PubMed  CAS  Google Scholar 

  4. Rottenberg ME, Gigliotti Rothfuchs AC, Gigliotti D, Svanholm C, Bandholtz L, Wigzell H. (1999) Role of innate and adaptive immunity in the outcome of primary infection with Chlamydia pneumoniae as analyzed in genetically modified mice. J. Immunol. 162: 2829–2836.

    PubMed  CAS  Google Scholar 

  5. Johansson M, Schon K, Ward M, Lycke N. (1997) Studies in knockout mice reveal that antichlamydial protection requires TH1 cells producing IFN-γ: is this true for humans? Scand. J. Immunol. 46: 546–552.

    Article  CAS  PubMed  Google Scholar 

  6. Wang S, Fan Y, Brunham RC, Yang X. (1999) IFN-γ knockout mice show Th2-associated delayed-type hypersensitivity and the inflammatory cells fail to localize and control chlamydial infection. Eur. J. Immunol. 29: 3782–3792.

    Article  CAS  PubMed  Google Scholar 

  7. Yang X, Gartner J, Zhu L, Wang S, Brunham RC. (1999) IL-10 gene knockout mice show enhanced Th1-like protective immunity and absent granuloma formation following Chlamydia trachomatis lung infection. J. Immunol. 162: 1010–1017.

    PubMed  CAS  Google Scholar 

  8. Yang X, HayGlass KT, Brunham RC. (1996) Genetically determined differences in IL-10 and IFN-γ responses correlate with clearance of Chlamydia trachomatis mouse pneumonitis infection. J. Immunol. 156: 4338–4344.

    PubMed  CAS  Google Scholar 

  9. Igietseme JU, Ramsey KH, Magee DM, Williams DM, Kincy TJ, Rank RG. (1993) Resolution of murine chlamydial genital infection by the adoptive transfer of a biovar-specific, Th1 lymphocyte clone. Reg. Immunol. 5: 317–324.

    PubMed  CAS  Google Scholar 

  10. Puren AJ, Fantuzzi G, Gu Y, Su MS, Dinarello CA. (1998) Interleukin-18 (IFNγ-inducing factor) induces IL-8 and IL-1 β via TNFα production from non-CD14+ human blood mononuclear cells. J. Clin. Invest. 101: 711–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Munder M, Mallo M, Eichmann K, Modolell M. (1998) Murine macrophages secrete interferon γ upon combined stimulation with interleukin IL-12 and IL-18: a novel pathway of autocrine macrophage activation. J. Exp. Med. 187: 2103–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stoll S, Muller G, Kurimoto M, et al. (1997) Production of IL-18 (IFN-γ-inducing factor) messenger RNA and functional protein by murine keratinocytes. J. Immunol. 159: 298–302.

    PubMed  CAS  Google Scholar 

  13. Stoll S, Jonuleit H, Schmitt E, et al. (1998) Production of functional IL-18 by different subtypes of murine and human dendritic cells (DC): DC-derived IL-18 enhances IL-12-dependent Th1 development. Eur. J. Immunol. 28: 3231–3239.

    Article  CAS  PubMed  Google Scholar 

  14. Gu Y, Kuida K, Tsutsui H, et al. (1997) Activation of interferon-γ inducing factor mediated by interleukin-1 β converting enzyme. Science 275: 206–209.

    Article  CAS  PubMed  Google Scholar 

  15. Ghayur T, Banerjee S, Hugunin M, et al. (1997) Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386: 619–623.

    Article  CAS  PubMed  Google Scholar 

  16. Takeda K, Tsutsui H, Yoshimoto T, et al. (1998) Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8: 383–390.

    Article  CAS  PubMed  Google Scholar 

  17. Ohtsuki T, Micallef MJ, Kohno K, Tanimoto T, Ikeda M, Kurimoto M. (1997) Interleukin 18 enhances Fas ligand expression and induces apoptosis in Fas-expressing human myelomonocytic KG-1 cells. Anticancer Res. 17: 3253–3258.

    PubMed  CAS  Google Scholar 

  18. Leite-De-Moraes MC, Hameg A, Arnould A, et al. (1999) A distinct IL-18-induced pathway to fully activate NK T lymphocytes independently from TCR engagement. J. Immunol. 163: 5871–5876.

    PubMed  CAS  Google Scholar 

  19. Hyodo Y, Matsui K, Hayashi N, et al. (1999) IL-18 up-regulates perforin-mediated NK activity without increasing perforin messenger RNA expression by binding to constitutively expressed IL-18 receptor. J. Immunol. 162: 1662–1668.

    PubMed  CAS  Google Scholar 

  20. Kohka H, Yoshino T, Iwagaki H, et al. (1998) Interleukin-18/interferon-γ-inducing factor, a novel cytokine, up-regulates ICAM-1 (CD54) expression in KG-1 cells. J. Leukoc. Biol. 64: 519–527.

    Article  CAS  PubMed  Google Scholar 

  21. Dinarello CA. (1999) Interleukin-18. Methods 19: 121–132.

    Article  CAS  PubMed  Google Scholar 

  22. Dinarello CA, Novick D, Puren AJ, et al. (1998) Overview of interleukin-18: more than an interferon-γ inducing factor. J. Leukoc. Biol. 63: 658–664.

    Article  CAS  PubMed  Google Scholar 

  23. Sugawara I, Yamada H, Kaneko H, Mizuno S, Takeda K, Akira S. (1999) Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice. Infect. Immun. 67: 2585–2589.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Wei XQ, Leung BP, Niedbala W, et al. (1999) Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice. J. Immunol. 163: 2821–2828.

    PubMed  CAS  Google Scholar 

  25. Mastroeni P, Clare S, Khan S, et al. (1999) Interleukin 18 contributes to host resistance and γ interferon production in mice infected with virulent Salmonella typhimurium. Infect. Immun. 67: 478–483.

    PubMed  CAS  Google Scholar 

  26. Fujioka N, Akazawa R, Ohashi K, Fujii M, Ikeda M, Kurimoto M. (1999) Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J. Virol. 73: 2401–2409.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Lu H, Zhong G. (1999) Interleukin-12 production is required for chlamydial antigen-pulsed dendritic cells to induce protection against live Chlamydia trachomatis infection. Infect. Immun. 67: 1763–1769.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Kawakami K, Qureshi MH, Zhang T, Okamura H, Kurimoto M, Saito A. (1997) IL-18 protects mice against pulmonary and disseminated infection with Cryptococcus neoformans by inducing IFN-γ production. J. Immunol. 159: 5528–5534.

    PubMed  CAS  Google Scholar 

  29. Bohn E, Sing A, Zumbihl R, et al. (1998) IL-18 (IFN-γ-inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice. J. Immunol. 160: 299–307.

    PubMed  CAS  Google Scholar 

  30. Xu D, Chan WL, Leung BP, et al. (1998) Selective expression and functions of interleukin18 receptor on T helper (Th) type 1 but not Th2 cells. J. Exp. Med. 188: 1485–1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Medical Research Council of Canada and Aventis Pasteur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Brunham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Yang, X., Takeda, K. et al. Chlamydia trachomatis Mouse Pneumonitis Lung Infection in IL-18 and IL-12 Knockout Mice: IL-12 Is Dominant over IL-18 for Protective Immunity. Mol Med 6, 604–612 (2000). https://doi.org/10.1007/BF03401798

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401798

Keywords

Navigation