Skip to main content

Advertisement

Log in

Molecular Defects in Chronic Myeloproliferative Disorders

  • Review Article
  • Published:
Molecular Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Harris NL, Jaffe ES, Diebold J. (1999) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee-Airlie House. Clinical Oncology 17: 3835–3849.

    Article  CAS  Google Scholar 

  2. Tefferi A. (1999) Introduction: overview of chronic myeloproliferative disorders. Semin. Hematol. 36: 1–2.

    PubMed  CAS  Google Scholar 

  3. Terreri A. (1998) The Philadelphia chromosome negative chronic myeloproliferative disorders: a practical overview. Mayo Clin. Proc. 73: 1177–1184.

    Article  Google Scholar 

  4. Montefusco E, Alimena G, L Coco F, et al. (1992) Ph-negative and bcr-negative atypical chronic myelogenous leukemia: biological features and clinical outcome. Ann. Hematol. 1: 17–21.

    Article  Google Scholar 

  5. Bennett JM, Catovsky D, Daniel MT, et al. (1994) The chronic myeloid leukaemia: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Brit. J. of Hematology 87: 746–754.

    Article  CAS  Google Scholar 

  6. Weller PF, Bubley GJ. (1994) The idiopathic hypereosinophilic syndrome. Blood 83: 2759–2779.

    PubMed  CAS  Google Scholar 

  7. Hardy WR, Anderson RE. (1968) The hypereosinophilic syndrome. Ann. Intern. Med. 68: 1220.

    Article  PubMed  CAS  Google Scholar 

  8. Metcalfe DD. (1991) Classification and diagnosis of mastocytosis: current status. J. Invest. Dermatol. 96:25–45.

    Google Scholar 

  9. Tharp MD. (1995) Mast cell disease and its diagnosis. J. Invest. Dermatol 104: 885.

    Article  PubMed  CAS  Google Scholar 

  10. Macdonald D, Aguiar RCT, Mason PJ, Goldman JM, Cross NCP. (1995) A new myeloproliferative disorder associated with chromosomal translocations involving 8p11: a review. Leukemia 9: 1628–1630.

    PubMed  CAS  Google Scholar 

  11. Aguiar RCT, Chase A, Coulthard S, et al. (1997) Abnormalities of chromosome band 8p11 in leukemia: two clinical syndromes can be distinguished on the basis of MOZ involvement. Blood 90: 3130–3135.

    PubMed  CAS  Google Scholar 

  12. Raskind WH, Steinmann L, Najfeld V. (1998) Clonal development of myeloproliferative disorders: clues to hematopoietic differentiation and multistep pathogenesis of cancer. Leukemia 2: 108–116.

    Article  Google Scholar 

  13. Blanchard KL, Gililand DG, Bunn HF. (1992) Clonality in myeloproliferative disorders. Am. J. Med. Sci. 304: 125–130.

    Article  PubMed  CAS  Google Scholar 

  14. Gilbert HL, Acharya J, Pearson TC. (1998) Implications for the use of X-chromosome inactivation patterns and their relevance to the myeloproliferative disorders. Eur. J. Haematol. 4: 282–283.

    Google Scholar 

  15. Fialkow PJ, Jacobson RJ, Papayannopoulou T. (1977) Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Amer. J. Med. 63: 125–130.

    Article  PubMed  CAS  Google Scholar 

  16. Raskind WH, Steinmann L, Najfeld V. (1997) Clonal development of myeloproliferative disorders: clues to hematopoietic differentiation and multistep pathogenesis of cancer. Leukemia 12: 108–116.

    Article  Google Scholar 

  17. Faderl Stefan, Talpaz Moshe, Estrov Zeev, et al. (1999) The biology of chronic myeloid leukemia. New Eng. J. Med. 341: 164–172.

    Article  PubMed  CAS  Google Scholar 

  18. Warmuth M, Danhauser-Riedl S, Hallek M. (1999) Molecular pathogenesis of chronic myeloid leukemia: implications for new therapeutic strategies. Ann Hematol. 78: 49–64.

    Article  PubMed  CAS  Google Scholar 

  19. Kantarjian HM, Smith TL, O’Brien S, Beran M, Sherry P, Talpaz M. (1995) Prolonged survival in chronic myelogenous leukemia after cytogenetic response to interferon-α therapy. Ann. Intern. Med. 122: 254–261.

    Article  PubMed  CAS  Google Scholar 

  20. Melo J. (1996) Overview: the molecular biology of chronic myeloid leukemia. Leukemia 10: S4–S9.

    Google Scholar 

  21. Ravandi F, Cortes J, Albitar M, et al. (1999) Chronic myelogenous leukaemia with p185 (BCR/ABL) expression: characteristics and clinical significance. Br. J. Haematol. 3: 581–586.

    Article  Google Scholar 

  22. Pane F, Frigeri F, Sindona M, et al. (1996) Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker. Blood 88: 2410–2414. [Erratum, Blood (1997) 89:4244.]

    PubMed  CAS  Google Scholar 

  23. Melo JV, Myint H, Galton DAG, Goldman JM. (1994) P190 BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia. Leukemia 8(1): 208–211.

    PubMed  CAS  Google Scholar 

  24. Zaccaria Alfonso, Martinelli Giovanni, Testoni Nicoletta, et al. (1995) Does the type of BCR/ABL junction predict the survival of patients with Ph1-positive Myeloid Leukemia? Leuk. and Lymph. 16: 231–236.

    Article  CAS  Google Scholar 

  25. Daley GQ, Van Etten RA, Baltimore D. (1990) Induction of chronic myelogenous leukemia in mice by the p210bcr/abl gene of the Philadelphia chromosome. Science 247: 824–830.

    Article  PubMed  CAS  Google Scholar 

  26. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pottengale PK, Groffen J. (1990) Acute leukaemia in bcr/abl transgenic mice. Nature 344: 251–253.

    Article  PubMed  CAS  Google Scholar 

  27. Honda H, Fujii T, Takatoku M, et al. (1995) Expression of p210bcr/abl by metallothionein promoter induced T-cell leukemia in transgenic mice. Blood 85: 2853–2861.

    PubMed  CAS  Google Scholar 

  28. Cortez D, Stoica G, Pierce JH, Pendergast AM. (1996) The BCR-ABL tyrosine kinase inhibits apoptosis by activating a Ras-dependent signaling pathway. Oncogene 13: 2589–2594.

    PubMed  CAS  Google Scholar 

  29. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P. (1995) Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 86: 3118–3122.

    PubMed  CAS  Google Scholar 

  30. Bose S, Deninger M, Gora-Tybor J, Goldman JM, Melo JV. (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92: 3362–3367.

    PubMed  CAS  Google Scholar 

  31. Faderl S, Kantarjian MH, Talpaz M. (1999) Chronic myelogenous leukemia: update on biology and treatment. Oncology 13: 2.

    Google Scholar 

  32. Mitani K, et al. (1994) Generation of the AML1-EVI1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J. 13: 504–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, et al. (1991) p53 in chronic myelogenous leukemia in acute phase. Proc. Natl. Acad. Sci. U.S.A. 88: 6293–6297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Towatari M, Adachi, Kato H, Saita H. (1991) Absence of the human retinoblastoma gene product in the megakaryoblastic crisis of chronic myelogenous leukemia. Blood 78: 3259–3268.

    Google Scholar 

  35. Nieborowska-Skorska M, Ratajczak MZ, Calabretta B, Skorski T. (1994) The role of c-Myc protooncogene in chronic myelogenous leukemia. Folia Histochem. Cytobiol. 4: 231–234.

    Google Scholar 

  36. Sill H, Goldman JM, Cross NC. (1995) Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood 85: 2013–2016.

    PubMed  CAS  Google Scholar 

  37. Gow J, Hughes D, Farr C, et al. (1988) Activation of Ha-ras in human chronic granulocytic and chronic myelomonocytic leukaemia. Leuk. Res. 10: 805–810.

    Article  Google Scholar 

  38. Negrini M, Cuneo A, Nakamura T, et al. (1995) A novel t(9;11)(p22;q23) with ALL-1 gene rearrangement associated with progression of a myeloproliferative disorder to acute myeloid leukemia. Cancer Genet. Cytogenet. 83: 65–70

    Article  PubMed  CAS  Google Scholar 

  39. Turhan AG, Solary E, Vainchenker W, Dusanter-Fourt I. (1998) Molecular pathophysiology of chronic myelogenous leukemia. Hematol. Cell Ther. 5: 217–221.

    Google Scholar 

  40. Hasle H, Olesen G, Kerndrup G, Philip P, Jacobsen N. (1996) Chronic neutrophil leukaemia in adolescence and young adulthood. Br. J. Haematol. 4: 628–630.

    Article  Google Scholar 

  41. Albitar M, Wu Wi, Feltz E, et al. (1997) Simplified reverse dot blot analyses for detecting of ras oncogene mutations. Mol. Diag. 3: 169–176.

    Article  Google Scholar 

  42. Cogswell PC, Morgan R, Dunn M, et al. (1989) Mutations of the ras protooncogenes in chronic myelogenous leukemia: a high frequency of ras mutations in bcr/abl rearrangement-negative chronic myelogenous leukemia. Blood 8: 2629–2633.

    Google Scholar 

  43. Gaidano G, Guerrasio A, Serra A, Rege-Cambrin G, Saglio G. (1994) Molecular mechanisms of tumor progression in chronic myeloproliferative disorders. Leukemia. 8 (Suppl 1): S27–29.

    PubMed  Google Scholar 

  44. Ludwig L, Janssen JW, Bartram CR. (1995) Exon trap analysis of a NF1 splice site mutation in a chronic myelomonocytic leukemia patient. Leukemia 5: 922–924.

    Google Scholar 

  45. Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG. (1996) The TEL/platelet-derived growth factor B receptor (PDGF BR) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF BR kinase-dependent signaling pathways. Proc. Natl. Acad. Sci. 93: 14845–14850.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Golub TR, Barker GF, Lovett M, Gilliland DG. (1994) Fusion of PDGF receptor B to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77: 307–316.

    Article  PubMed  CAS  Google Scholar 

  47. Ritchie KA, Aprikayan AA, Bowen-Pope DF, et al. (1999) The Tel-PDGFRβ fusion gene produces a chronic myeloproliferative syndrome in transgenic mice. Leukemia 13: 1790–1803.

    Article  PubMed  CAS  Google Scholar 

  48. Sambani C, Trafalis DT, Vessalas G, et al. (1998) Trisomy 6 and double minute chromosomes in a case of chronic myelomonocytic leukemia. Cancer Genet. Cytogenet. 106: 180–181.

    Article  PubMed  CAS  Google Scholar 

  49. Sawyers CL, Denny CT. (1994) Chronic myelomonocytic leukemia: tel-a-kinase what ets all about. Cell 77: 171–173.

    Article  PubMed  CAS  Google Scholar 

  50. Diez-Martin JL, Graham DL, Petitt RM, Dewald GW. (1991) Chromosome studies in 104 patients with polycythemia vera. Mayo Clinic Proc. 66: 287–299.

    Article  CAS  Google Scholar 

  51. Amiel A, Gaber E, Manor Y, et al. (1995) Fluorescence in situ hybridization for the dectection of trisomy 8 and trisomy 9 in polycythemiavera. Cancer Gen. and Cytogen. 79: 153–156.

    Article  CAS  Google Scholar 

  52. Asimakopoulos FA, Holloway TL, Nacheva EP, et al. (1996b) Detection of chromosome 20q deletions in bone marrow metaphases but not peripheral blood granulocytes in patients with myeloproliferative disorders or myelodisplastic syndromes. Blood 87: 1561–1570.

    PubMed  CAS  Google Scholar 

  53. Lawler SD, Millard RE, Kay HEM. (1970) Further cytogenetical investigations in polycythaemia vera. Eur. J. Cancer 6: 223–233.

    Article  PubMed  CAS  Google Scholar 

  54. Miller JB, Testa JR, Lindgren V, Rowley JD. (1985) The pattern and clinical significance of karyotypic abnormalities in patients with idiopathic and postpolycythemic myelofibrosis. Cancer 55: 582–591.

    Article  PubMed  CAS  Google Scholar 

  55. Fernandez-Luna JL, Silva M, Richard C, Sanz C, Adalberto B. (1998) Pathogenesis of plycythemia vera. Heamatologica 83: 150–158.

    CAS  Google Scholar 

  56. Correa PN, Axelrad AA. (1991) Production of erythropietic bursts by progenitor cells from adult human peripheral blood in an improved serum-free medium: role of insulin-like growth factor-I. Blood 78: 2823–2833.

    PubMed  CAS  Google Scholar 

  57. Yoshimura A, Longmore G, Lodish HF. (1990) Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature 348: 647–649.

    Article  PubMed  CAS  Google Scholar 

  58. Hess G, Rose P, Gamm H, Papadileris S, Huber C, Seliger B. (1994) Molecular analysis of erythropoietin receptor system in patients with polycythemia vera. Br. J. Haematol. 88: 794–802.

    Article  PubMed  CAS  Google Scholar 

  59. Chiba S, Takahashi T, Takeshita K, et al. (1997) Selective expression of mRNA coding for the truncated form of erythropoietin receptor in hematopoietic cells and its decrease in patients with polycythemia vera. Blood 90: 97–104.

    PubMed  CAS  Google Scholar 

  60. De La Chapelle A, Sistonen P, Lehvaslaiho H, Ikkala E, Juvonen E. (1993) Familial erythropoiten receptor gene. Lancet 341: 82–84.

    Article  PubMed  Google Scholar 

  61. Zhuang H, Niu Z, He TC, Pastel SV, Wojchowski DM. (1995) Erythropoietin-dependent inhibition of apoptosis is supported by carboxyl-truncated receptor forms and blocked dominant-negative forms of Jak2. J. Biol. Chem. 270: 14500–14504.

    Article  PubMed  CAS  Google Scholar 

  62. El-Kassar N, Hetet G, Brie’re J, Grandchamp B. (1997) Clonality analysis in essential thrombocythaemia. Blood 90: 347a.

    Google Scholar 

  63. Third International Workshop on Chromosomes in Leukemia. (1981) Report on essential thrombocythemia. Cancer Gen. and Cytogen. 4: 138–142.

    Article  Google Scholar 

  64. Elis A, Amiel A, Manor Y, Tangi I, Fejgin M, Lishner M. (1996) The detection of trisomies 8 and 9 in patients with essential thrombocytosis by fluorescence in situ hybridization. Cancer Genet. Cytogenet. 92: 14–17.

    Article  PubMed  CAS  Google Scholar 

  65. Mitev L, Georgiev G, Petrov A, Manolova Y. (1996). Unusual chromosome aberration, t(13; 14)(q32; q32.3), in a case of essential thrombocythemia with extreme thrombocytosis. Cancer Genet. Cytogenet. 91: 68–70

    Article  PubMed  CAS  Google Scholar 

  66. Killick S, Matutes E, Swansbury J, Catovsky D. (1998). Case 17: essential thrombocythaemia with inversion 3 terminating in acute leukaemia. Leuk. Lymphoma. 30: 661–664.

    Article  PubMed  CAS  Google Scholar 

  67. Rios R, Sole F, del Mar Perez M, Gascon F, Garcia F, Gonzalez PM. (1996) t(2; 3) in a case of blastic transformation of essential thrombocythaemia. Br. J. Haematol. 92: 769–770.

    PubMed  CAS  Google Scholar 

  68. Horikawa Y, Matsumura I, Hashimoto K, et al. (1997) Markedly reduced expression of platelet c-mpl receptor in essential thrombocythaemia. Blood 90: 4031–4038.

    PubMed  CAS  Google Scholar 

  69. Kiladjian JJ, El-Kassar N, Hetet G, et al. (1997) Study of thrombopoietin receptor in essential thrombocythaemia. Leukemia 11: 1821–1826.

    Article  PubMed  CAS  Google Scholar 

  70. Li Y, Hetet G, Kiladjian J-J, et al. (1996) Proto-oncogene c-mpl is involved in spontaneous megakaryocytopoiesis in myeloproliferative disorders. Br. J. Haemat. 92: 60–66.

    Article  CAS  Google Scholar 

  71. Zhou W, Toombs CF, Zou T, Guo J, Robinson MO. (1997) Transgenic mice overexpressing human c-mpl ligand exhibit chronic thrombocytosis and display enhanced recovery from 5-fluorouracil or antiplatelet serum treatment. Blood 89: 1551–1559.

    PubMed  CAS  Google Scholar 

  72. Taksin AL, Le Couedic JP, Dusanter-Fourt I, et al. (1999) Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis is not related to an autocrine stimulation by Mpl-L. Blood 93: 125–139.

    PubMed  CAS  Google Scholar 

  73. Cripe LD, Hromas R. (1998) Malignant disorders of megakaryocytes. Sem. in Hemat. 35: 200–209.

    CAS  Google Scholar 

  74. Jacobson RJ, Salo A, Fialkow PJ. (1978) Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood 51: 189–194.

    PubMed  CAS  Google Scholar 

  75. Martyre MC, Le Bousse-Kerdiles MC, Romquin N, et al. (1997) Elevated levels of basic fibroblast growth factor in megakaryocytes and platelets from patients with idiopathic myelo-fibrosis. Br. J. Haematol. 2: 441–448.

    Article  Google Scholar 

  76. Ross RRE, Bowen-Pope DF. (1986) The biology of platelet-derived growth factor. Cell 46: 155–169.

    Article  PubMed  CAS  Google Scholar 

  77. Reilly JT. (1998) Pathogenesis and management of idiopathic myelofibrosis. Baillieres Clin. Haematol. 4: 751–767.

    Article  Google Scholar 

  78. Folkman J, Klaesburn M. (1987) Angiogenic factors. Science 235: 442–447.

    Article  PubMed  CAS  Google Scholar 

  79. Wang JC CC, Lou L-H, Mora M. (1997) Blood thrombopietin, IL-6 and IL-11 levels in patients with agnogenic myeloid metaplasia. Leukemia 11: 1827–1832.

    Article  PubMed  CAS  Google Scholar 

  80. Rameshwar P, Denny TN, Stein D, Gascon P. (1994) Monocyte adhesion in patients with bone marrow fibrosis is required for the production of fibrogenic cytokines. Potential role for interleukin-1 and TGF-α. J. Immunol. 153: 2819–2830.

    PubMed  CAS  Google Scholar 

  81. Yan XQ, Lacey D, Hill D, et al. (1996) A model of myelofibrosis and osteosclerosis in mice induced by overexpressing thrombopoietin (mpl ligand): reversal of disease by bone marrow transplantation. Blood 88: 402–409.

    PubMed  CAS  Google Scholar 

  82. Yan XQ, Lacey D, Fletcher F, et al. (1995) Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood 86: 4025–33.

    PubMed  CAS  Google Scholar 

  83. Bench AJ, Aldred MA, Humphray SJ, et al. (1998) A detailed physical transcriptional map of the region of chromosome 20 that is detected in myeloproliferative disorders and refinement of the common deleted region. Genomics 49: 351–362.

    Article  PubMed  CAS  Google Scholar 

  84. Borgström GH, Knuutila S, Ruutu T, et al. (1984) Abnormalities of chromosome 13 in myelofibrosis. Scand. J. Haemat. 33: 15–21.

    Article  PubMed  Google Scholar 

  85. Dewald GW, Wright PI. (1995) Chromosome abnormalities in the myeloproliferative disorders. Semi. in Oncol. 22: 341–354.

    CAS  Google Scholar 

  86. Donti E, Tabilio A, Bocchini F, et al. (1990) Partial trisomy 1q in idiopathic myelofibrosis. Leuk. Res. 14: 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  87. Geraedts JPM, den Ottolander GJ, Ploem JE, Muntinghe OG. (1980) An identical translocation between chromosome 1 and 7 in three patients with myelofibrosis and myeloid metaplasia. Br. J. Haemat. 44: 569–575.

    Article  CAS  Google Scholar 

  88. Hsu LYF, Pinchiaroli D, Gilbert HS, et al. (1997) Partial trisomy of the long arm of chromosome 1 in myelofibrosis and polycythemia vera. Amer. J. Hemat. 2: 375–383.

    Article  Google Scholar 

  89. Reilly JT, Snowden JA, Spearing RL, et al. (1997) Cytogenetic abnormalities and their prognostic significance in idiopathic myelofibrosis: a study of 106 cases. Br. J. Haemat. 98: 96–102.

    Article  CAS  Google Scholar 

  90. Smadja N, Krulik M, de Gramont A, et al. (1987) Cytogenetic studies in twelve patients with myelofibrosis and myeloid metaplasia. Cancer Gen. and Cytogen. 24: 151–158.

    Article  CAS  Google Scholar 

  91. Whang-Peng, J, Lee E. Knutsen T, et al. (1978) Cytogenetic studies in patients with myelofibrosis and myeloid mataplasia. Leuk. Res. 2: 41–56.

    Article  Google Scholar 

  92. Cambier N, Baruchel A, Schlageter MH, et al. (1997) Chronic myelomonocytic leukemia: from biology to therapy. Hemat. and Cell Ther. 39: 41–48.

    Article  CAS  Google Scholar 

  93. Passamore SJ, Hann IM, Stiller CA, et al. (1995) Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood 85: 1742–1750.

    Google Scholar 

  94. Papayannopoulou T, Nakamoto B, Anagnou NP, Chui D, Dow L, Sanders J. (1991) Expression of embryonic globins by erythroid cells in juvenile chronic myelocytic leukemia. Blood 12: 2569–2576.

    Google Scholar 

  95. Butcher M, Frenck R, Emperor J, et al. (1995) Molecular evidence that childhood monosomy 7 syndrome is distinct from juvenile chronic myelogenous leukemia and other childhood myeloproliferative disorders. Genes Chromo. Cancer 1: 50–57.

    Article  Google Scholar 

  96. Shannon KM, Watterson J, Johnson P, et al. (1992) Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1: epidemiology and molecular analysis. Blood 79: 1311–1318

    PubMed  CAS  Google Scholar 

  97. Miyauchi J, Asada M, Sasaki M, Tsunematsu Y, Kojima S, Mizutani S. (1991) Mutations of the N-ras gene in juvenile chronic myelogenous leukemia. Blood 8: 2248–2254.

    Google Scholar 

  98. Savasan S, Zulfikar B, Ozgeneci A, Ozbek U, Sengun Z. (1996) Monosomy 7 myeloproliferative disease associted with neurofibramatosis type I: a case report. J. Chemother. 3: 243–246.

    Article  Google Scholar 

  99. Chang HW, Leong KH, Koh DR, Lee SH. (1999) Clonality of isolated eosinophils in the hypereosinophilic syndrome. Blood 5: 1651–1657.

    Google Scholar 

  100. Fishel RS, Farnen JP, Hanson CA, Silver SM, Stephen GE. (1990) Acute lymphoblastic leukemia with eosinophilia. Medicine 69: 232–243.

    Article  PubMed  CAS  Google Scholar 

  101. Troxell M, Mills G, Allen R. (1984) The hypereosinophlic syndrome in acute lymphocytic leukemia. Cancer 54: 1058–1061.

    Article  PubMed  CAS  Google Scholar 

  102. Forrest DL, Horsman DE, Jensen CL, et al. (1998) Myelodysplastic syndrome with hypereosinophilia and a nonrandom chromosomal abnormality dic(1;7): confirmation of eosi-nophil clonal involvement by fluorescencein in situ hybridization. Cancer Genet. Cytogenet. 1: 65–68.

    Article  Google Scholar 

  103. Brigaudeau C, Liozon E, Bernard P, Trimoreau F, Bordessoule D, Praloran V. (1996) Deletion of chromosome 2Oq associated with hypereosinophilic syndrome. A report of two cases. Cancer Genet. Cytogenet. 1: 82–84.

    Article  Google Scholar 

  104. Maibrain ML, Van den Bergh H, Zachee P. (1996) Further evidence for the clonal nature of the idiopathic hyperosinophilic syndrome: complete haematological and cytogenetic remission induced by interfon-α in case with with a unique chromosal abnormality. Br. J. Haematol. 1: 176–183.

    Article  Google Scholar 

  105. Brigaudeau C, Liozon E, Bernard P, et al. (1996) Deletion of chromosome 20q associated with hypereosinophilic syndrome. A report of two cases. Cancer Gene. and Cytogen. 87: 82–84.

    Article  CAS  Google Scholar 

  106. Fermand JP, Mitjavila MT, Le Couedic JP, et al. (1993) Role of granulocyte-macrophage colony-stimulating factor, interleukin-3 and interleukin-5 in the eosinophilia associated with T cell lymphoma. Br. J. Haematol. 83: 359.

    Article  PubMed  CAS  Google Scholar 

  107. Chang H, Jamal N, Wang XH, Minden MD, Messner HA. (1992) Constitutive production of the interlukins IL-5 and IL-6 by the lymphoma cell line OCI-Ly 17 derived from a patient with malignant lymphoma and hypereosinophilia. Leuk. Lymphoma 8: 97.

    Article  PubMed  CAS  Google Scholar 

  108. Schrezenmeier H, Thome SD, Tewald F, Fleischer B, Raghavachar A. (1993) Interlukin-5 is the predominant eosinophilopoietin produced by cloned T lymphocytes in hypereosinophilic syndrome. Exp. Hematol. 21: 358.

    PubMed  CAS  Google Scholar 

  109. Strath M, Dent L, Sanderson C. (1992) Infection of IL5 transgenic mice with Mesocestoides corti induces very high levels of IL5 but depressed production of eosinophils. Exp. Hematol. 20: 229.

    PubMed  CAS  Google Scholar 

  110. Longley BJ, Tyrrell L, Lu SZ, et al. (1996) Somatic c-kit activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat. Genet. 12: 312–314.

    Article  PubMed  CAS  Google Scholar 

  111. Nagata H, Worobec AS, Oh CK, Chowdhury, et al. (1995) Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc. Natl. Acad. Sci. 92: 10560–10564.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  112. Worobec AS, Semere T, Nagata H, Metcalfe DD. (1998) Clinical correlates of the presence of the Asp816Val c-kit mutation in the peripheral blood mononuclear cells of patients with mastocytosis. Amer. Cancer Soc. 83: 2120–2129.

    CAS  Google Scholar 

  113. Lishner M, Confino-Cohen R, Mekori YA, et al. (1996) Trisomies 9 and 8 detected by flourescence in situ hybridization in patients with sytemic mastocytosis. J. Allergy Clin. Immunol. 98: 199–204.

    Article  PubMed  CAS  Google Scholar 

  114. Shekhter-Levin S, Ball E, Swerdlow SH, et al. (1998) A near-haploid bone marrow karyotype in systemic mast cell disease: is it characteristic of the disease or an incidental finding? Cancer Genet. Cytogenet. 103: 124–129.

    Article  PubMed  CAS  Google Scholar 

  115. Xiao S, Nalabolu SR, Aster JC, et al. (1998) FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukemia/lymphoma syndrome. Nature Genetics 18: 84–87.

    Article  PubMed  CAS  Google Scholar 

  116. van den Berg H, Kroes W, van der Schoot CE, et al. (1996) A young child with acquired t(8;9)(p11;q34):additional proof that 8p11 is involved in mixed myeloid/T lymphoid malignancies. Leukemia 10: 662–668.

    Google Scholar 

  117. Chaffanet M, Popovici C, Leroux D, et al. (1998) t(6;8), t(8;13) translocations associated with stem cell myeloproliferative disorders have close or identical breakpoints in chromosome region 8p11–12. Oncogene 16: 945–949.

    Article  PubMed  CAS  Google Scholar 

  118. Elsner S, Martin H, Rode C, et al. (1994) An uncommon chromosomal translocation t(6;8) associated with atypical acute myelogeneous leukaemia/myeloproliferative disease detected by fluorescence in situ hybridization. Br. J. Haemat. 87 (Suppl. 1): 124.

    Google Scholar 

  119. Fagan K, Hyde S, Harrison P. (1993) Translocation (8;13) and T-cell lymphoma. Cancer Gene. and Cytogen. 65: 71–73.

    Article  CAS  Google Scholar 

  120. Xu X, Weinstein M, LI C, Deng C-X. (1999) Fibroblast growth factor receptors (FGRs) and their roles in limb development. Cell and Tissue Res. 296: 33–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Albitar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albitar, M., Freireich, E.J. Molecular Defects in Chronic Myeloproliferative Disorders. Mol Med 6, 555–567 (2000). https://doi.org/10.1007/BF03401794

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401794

Keywords

Navigation