Skip to main content

Advertisement

Log in

Transcription Factor-Based Drug Design in Anticancer Drug Development

  • Review
  • Published:
Molecular Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Latchman DS. (1995) Eukaryotic Transcription Factors, 2nd ed. Academic Press, London.

    Google Scholar 

  2. Tjian R. (1996) The biochemistry of transcription in eukaryotes: a paradigm for multisubunit regulatory complexes. Phil Trans. R. Soc. Lond. B 351: 491–499.

    Article  CAS  Google Scholar 

  3. Harrison SC. (1991) A structural taxonomy of DNA-binding domains. Nature 353: 715–719.

    Article  CAS  PubMed  Google Scholar 

  4. Papavassiliou AG. (1995) Transcription factors. N. Engl. J. Med. 332: 45–47.

    Article  CAS  PubMed  Google Scholar 

  5. Papavassiliou AG. (1995) Transcription factors: structure, function, and implication in malignant growth. Anticancer Res. 15: 891–894.

    PubMed  CAS  Google Scholar 

  6. Travers A. (1993) DNA-protein interactions: sequence specific recognition. In: DNA-Protein Interactions. Chapman & Hall, London, pp. 52–86.

    Chapter  Google Scholar 

  7. Pabo CO, Sauer RT. (1992) Transcription factors: Structural families and principles of DNA recognition. Annu. Rev. Biochem. 61: 1053–1095.

    Article  CAS  PubMed  Google Scholar 

  8. Ouzounis CA, Papavassiliou AG. (1997) DNA-binding motifs of eukaryotic transcription factors. In: Papavassiliou AG (ed). Transcription Factors in Eukaryotes. Molecular Biology Intelligence Unit. Landes Bioscience, Austin & Springer-Verlag, Heidelberg, pp. 1–21.

    Google Scholar 

  9. Tjian R, Maniatis T. (1994) Transcriptional activation: A complex puzzle with few easy pieces. Cell 77: 5–8.

    Article  CAS  PubMed  Google Scholar 

  10. Edwards DR. (1994) Cell signalling and the control of gene transcription. Trends Pharmacol. Sci. 15: 239–244.

    Article  CAS  PubMed  Google Scholar 

  11. Hunter T, Karin M. (1992) The regulation of transcription by phosphorylation. Cell 70: 375–387.

    Article  CAS  PubMed  Google Scholar 

  12. Karin M. (1994) Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr. Opin. Cell Biol. 6: 415–424.

    Article  CAS  PubMed  Google Scholar 

  13. Calkhoven CF, Ab G. (1996) Multiple steps in the regulation of transcription-factor level and activity. Biochem. J. 317: 329–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bishop JM, Hanafusa H. (1996) Proto-oncogenes in normal and neoplastic cells. In: Bishop JM, Weinberg RA (eds). Molecular Oncology. Scientific American, New York, pp. 61–83.

    Google Scholar 

  15. Macdonald F, Ford CHJ. (1997) Molecular Biology of Cancer. BIOS Scientific, Oxford, pp. 13–72.

    Google Scholar 

  16. Forrest D, Curran T. (1992) Crossed signals: oncogenic transcription factors. Curr. Opin. Genet. Dev. 2: 19–27.

    Article  CAS  PubMed  Google Scholar 

  17. Cooper GM. (1995) Transcription factors. In: Oncogenes, 2nd ed. Jones & Bartlett, Boston, pp. 255–278.

    Google Scholar 

  18. Wisdom RM. (1997) Oncogenic transcription factors. In: Papavassiliou AG (ed). Transcription Factors in Eukaryotes. Molecular Biology Intelligence Unit. Landes Bioscience, Austin & Springer-Verlag, Heidelberg, pp. 219–234.

    Google Scholar 

  19. Pawson T. (1996) The biochemical mechanisms of oncogene action. In: Bishop JM, Weinberg RA (eds). Molecular Oncology. Scientific American, New York, pp. 85–109.

    Google Scholar 

  20. Rabbitts TH. (1994) Chromosomal translocations in human cancer. Nature 372: 143–149.

    Article  CAS  PubMed  Google Scholar 

  21. Latchman DS. (1996) Transcription-factor mutations and disease. N. Engl. J. Med. 334: 28–33.

    Article  CAS  PubMed  Google Scholar 

  22. Sawyers CL, Denny CT. (1994) Chronic myelomonocytic leukemia: Tel-a-kinase what Ets all about. Cell 77: 171–173.

    Article  CAS  PubMed  Google Scholar 

  23. Dyck JA, Maul GG, Miller WH Jr, Chen JD, Kakizuka A, Evans RM. (1994) A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76: 333–343.

    Article  CAS  PubMed  Google Scholar 

  24. Fredericks WJ, Galili N, Mukhopadhyay S, et al. (1995) The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol. Cell. Biol 15: 1522–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marcu KB, Bossone SA, Petel AJ. (1992) Myc function and regulation. Annu. Rev. Biochem. 61: 809–860.

    Article  CAS  PubMed  Google Scholar 

  26. Cooper GM. (1995) Oncogenes and chromosome translocation. In: Oncogenes, 2nd ed. Jones & Bartlett, Boston, pp. 99–112.

    Google Scholar 

  27. Knudson AG. (1993) Antioncogenes and human cancer. Proc. Natl. Acad. Sci. U.S.A. 90: 10914–10921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davies RC, Hastie ND. (1997) Tumor suppression by ‘transcription’ factors. In: Papavassiliou AG (ed). Transcription Factors in Eukaryotes. Molecular Biology Intelligence Unit. Landes Bioscience, Austin & Springer-Verlag, Heidelberg, pp. 297–316.

    Google Scholar 

  29. Marx J. (1993) How p53 suppresses cell growth. Science 262: 1644–1645.

    Article  CAS  PubMed  Google Scholar 

  30. Hastie ND. (1993) Wilm’s tumour gene and function. Curr. Opin. Genet. Dev. 3: 408–413.

    Article  CAS  PubMed  Google Scholar 

  31. Sarma MH. (1997) p73 gene: A new relative of p53. Cancer Watch 6: 139–140.

    Google Scholar 

  32. La Thangue NB. (1994) DP and E2F proteins: components of a heterodimeric transcription factor implicated in cell cycle control. Curr. Opin. Cell Biol. 6: 443–450.

    Article  PubMed  Google Scholar 

  33. Weinberg RA. (1995) The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  CAS  PubMed  Google Scholar 

  34. Cooper GM. (1995) Tumor suppressor genes in human neoplasms. In: Oncogenes, 2nd ed. Jones & Bartlett, Boston, pp. 145–161.

    Google Scholar 

  35. Marshall GR, Cramer RD III. (1988) Three-dimensional structure-activity relationships. Trends Pharmacol. Sci. 9: 285–289.

    Article  CAS  PubMed  Google Scholar 

  36. Peisach E, Casebier D, Gallion SL, et al. (1995) Interaction of a peptidomimetic aminimide inhibitor with elastase. Science 269: 66–69.

    Article  CAS  PubMed  Google Scholar 

  37. Neidle S. (1994) Discovery of new anticancer drugs by computer-aided drug design. Ann. Oncol. 5(Suppl. 4): S51–S54.

    Article  Google Scholar 

  38. Maulik S, Patel SD. (1997) Protein engineering and computer-assisted drug design. In: Molecular Biotechnology—Therapeutic Applications and Strategies. Wiley-Liss, New York, pp. 109–153.

    Google Scholar 

  39. Brint AT, Willett PJ. (1987) Upperbound procedures for the identification of similar three-dimensional chemical structures. J. Comput. Aided Mol. Des. 2: 311–320.

    Article  Google Scholar 

  40. Wang H. (1991) Grid-search molecular accessible surface algorithm for solving the protein-docking problem. J. Comput. Chem. 12: 746–750.

    Article  CAS  Google Scholar 

  41. Goodford PJ. (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28: 849–857.

    Article  CAS  PubMed  Google Scholar 

  42. Smellie AS, Crippen GM, Richards WG. (1991) Fast drug-receptor mapping by site-directed distances: A novel method of predicting new pharmacological leads. J. Chem. Inf. Comput. Sci. 31: 386–392.

    Article  CAS  PubMed  Google Scholar 

  43. Kuntz ID. (1992) Structure-based strategies for drug design and discovery. Science 257: 1078–1082.

    Article  CAS  PubMed  Google Scholar 

  44. Sudarsanam S, Virca GD, March CJ, Srinivasan S. (1992) An approach to computer-aided inhibitor design: Application to cathepsin L. J. Comput. Aided Mol. Des. 6: 223–233.

    Article  CAS  PubMed  Google Scholar 

  45. Desjarlais RL, Sheridan RP, Seibel GL, Dixon JS, Kuntz ID, Venkataraghavan R. (1988) Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J. Med. Chem. 31: 722–729.

    Article  CAS  PubMed  Google Scholar 

  46. Lawrence MC, Davis PC. (1992) CLIX: A search algorithm for finding novel ligands capable of binding proteins of known three-dimensional structure. Proteins 12: 31–41.

    Article  CAS  PubMed  Google Scholar 

  47. Rotstein SH, Murcko MA. (1993) GenStar: A method for de novo drug design. J. Comput. Aided Mol. Des. 7: 23–43.

    Article  CAS  PubMed  Google Scholar 

  48. Peterson MG, Baichwal VR. (1993) Transcription factor based therapeutics: drugs of the future? Trends Biotechnol. 11: 11–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Papavassiliou M.D., Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papavassiliou, A.G. Transcription Factor-Based Drug Design in Anticancer Drug Development. Mol Med 3, 799–810 (1997). https://doi.org/10.1007/BF03401717

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401717

Keywords

Navigation