Skip to main content
Log in

Differential Regulation of the p21/WAF-1 and mdm2 Genes after High-Dose UV Irradiation: p53-Dependent and p53-Independent Regulation of the mdm2 Gene

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

DNA damage in mammalian cells stabilizes the p53 protein which then functions as a cell cycle checkpoint by leading to growth arrest or apoptosis. p53 is a transcription factor and positively regulates the expression of the p21/WAF-l gene and the mdm2 gene. After high-dose UV irradiation, p53 increases the expression of the p21/WAF-1 gene immediately (2 to 5 hours after irradiation) while the induction of the mdm2 gene is delayed (8 to 12 hours after irradiation). Experiments presented here explore this differential expression of two different p53-regulated genes.

Materials and Methods

IP-Western (protein) and Northern (mRNA) blot experiments are used to follow mdm2 and p21/WAF-l expression in primary rat or mouse cells after a low-dose (4 J/m2) or a high-dose (20 J/M2) of UV irradiation. Northern blot and nuclear run-on experiments are employed to study mRNA stability as well as transcription rates of selected genes.

Results

After high-dose UV irradiation, p53 is rapidly stabilized and the expression of p21/WAF1 is immediately increased. By contrast, both protein and mRNA levels of mdm2 first decrease in a p53-independent manner, and later increase in a p53-dependent manner. The initial decline of mdm2 expression following high-dose UV irradiation is UV-dosage dependent and regulated at the level of transcription.

Conclusion

p53 regulates two genes, p21/WAF1 (blocks cell cycle progression) and mdm2 (reverses p53 activity), that mediate opposite actions. This process is regulated in a temporal fashion after high-dose UV irradiation, so that cell cycle progression can be halted while DNA repair continues prior to reversal of p53-mediated arrest by mdm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cahilly-Snyder L, Yang-Feng T, Francke U, George DL. (1987) Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Sem. Cell Molec. Gen. 13: 235–244.

    Article  CAS  Google Scholar 

  2. Oliner JD, Kinzler KW, Meitzer PS, George D, Vogelstein B. (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83.

    Article  CAS  PubMed  Google Scholar 

  3. Leach FS, Tokino T, Meitzer P, Burrell M, Oliner JD, Smith S, Hill DE, Sidransky D, Kinzler KW, Vogelstein B. (1993) P53 mutations and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 53: 2231–2234.

    PubMed  CAS  Google Scholar 

  4. Ladanyi M, Cha C, Lewis R, Jhanwar SC, Huvos AG, Healey JH. (1993) MDM2 gene amplification in metastatic osteosarcoma. Cancer Res. 53: 16–18.

    PubMed  CAS  Google Scholar 

  5. Bueso-Ramos CE, Yang Y, deLeon E, Mc-Cown P, Stass SA, Albitar M. (1993) The human MDM-2 oncogene is overexpressed in leukemias. Blood 82: 2617–2623.

    PubMed  CAS  Google Scholar 

  6. Sheikh MS, Shao AM, Hussain A, Fontana JA. (1993) The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma. Cancer Res. 53: 3226–3228.

    PubMed  CAS  Google Scholar 

  7. Watanabe T, Hotta T, Ichikawa A, Kinoshita T, Nagai H, Uchida T, Murate T, Saito H. (1994) The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of ß-cell origin. Blood 84: 3158–3165.

    CAS  PubMed  Google Scholar 

  8. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. (1993) Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 53: 2736–2739.

    PubMed  CAS  Google Scholar 

  9. Fakharzadeh SS, Trusko SP, George DL. (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 10: 1565–1569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Finlay CA. (1993) The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol. Cell. Biol. 13: 301–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53 mediated transactivation. Cell 69: 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  12. Barak Y, Oren M. (1992) Enhanced binding of a 95 Kd protein to p53 in cells undergoing p53-mediated growth arrest. EMBO J. 11: 2115–2121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chen J, Lin J, Levine AJ. (1995) The regulation of p53-mediated transcription functions by mdm-2. Mol. Med. 1: 142–152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  15. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace, Jr. AJ. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587–597.

    Article  CAS  PubMed  Google Scholar 

  16. Miyashita T, Krajewski S, Krajewska M, Wang H-K, Lieberman D, Hoffman B, Reed J. (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805.

    PubMed  CAS  Google Scholar 

  17. Murphy M, Hinman A, Levine AJ. (1996) Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes & Development 10: 2971–2980.

    Article  CAS  Google Scholar 

  18. Wu X, Bayle JH, Olson D, Levine AJ. (1993) The p53-mdm-2 autoregulatory feedback loop. 17: 1126–1132.

    Google Scholar 

  19. Juven T, Barak Y, Zauberman A, George DL, Oren M. (1993) Wild-type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 8: 3411–3416.

    PubMed  CAS  Google Scholar 

  20. Chen JD, Wu XW, Lin JY, Levine AJ. (1996) mdm-2 inhibits the Gl arrest and apoptosis functions of the p53 tumor suppressor protein. Mol. Cell. Bio. 16: 2445–2452.

    Article  CAS  Google Scholar 

  21. Montes de Oca Luna R, Wagner DS, Lozano G. (1995) Rescue of early embroynic lethality in mdm2- deficient mice by deletion of p53. Nature 378: 203–206.

    Article  Google Scholar 

  22. Jones SN, Roe AE, Donehower LA, Bradley A. (1995) Rescue of embroynic lethality in Mdm2-deficient mice by absence of p53. Nature 378: 206–208.

    Article  CAS  PubMed  Google Scholar 

  23. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51: 6304–6311.

    PubMed  CAS  Google Scholar 

  24. Lu X, Lane DP. (1993) Differential induction of transcriptionally active p53 following UV or ionizing radiation: Defects in chromosome instability syndromes? Cell 75: 765–778.

    Article  CAS  PubMed  Google Scholar 

  25. Perry ME, Piette J, Zawadzki J, Harvey D, Levine AJ. (1993) The mdm-2 gene is induced in response to UV light in a p53-de-pendent manner. Proc. Natl. Acad. Sci. USA 90: 11623–11627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen CY, Oliner JD, Zhan Q, Fornace AJJ, Vogelstein B, Kastan MB. (1994) Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc. Natl. Acad. Sci. USA 91: 2684–2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. (1989) Current Protocols in Molecular Biology, Vol. 1. Greene Publishing Associates and Wiley-In-terscience. New York.

    Google Scholar 

  28. Xiao ZX, Chen JD, Levine AL, Moditahedi N, Xing J, Sellers WR, Livingston DM. (1995) Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375: 694–698.

    Article  CAS  PubMed  Google Scholar 

  29. Martin K, Trouche D, Hagemeler C, Sørensen TS, La Thangue NB, Kouzarides T. (1995) Stimulation of E2F1/DP1 transcriptional activity by mdm2 oncoprotein. Nature 375: 691–694.

    Article  CAS  PubMed  Google Scholar 

  30. Barak Y, Gottlieb E, Juven-Gershon T, Oren M. (1994) Regulation of mdm2 expression by p53: Alternative promoters produce transcripts with nonidentical translation potential. Genes & Dev. 8: 1739–1749.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. J. Hank Bayle, Stuart Lutzker, and Maureen Murphy for helpful discussions. We also thank Drs. Deborah Freedman, Maureen Murphy, and Dawn Resnick for critical reading of the manuscript. Special thanks to Yu-qiao Shen for his help and support. This work was supported by a grant from the NCI, P01-41086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold J. Levine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Levine, A.J. Differential Regulation of the p21/WAF-1 and mdm2 Genes after High-Dose UV Irradiation: p53-Dependent and p53-Independent Regulation of the mdm2 Gene. Mol Med 3, 441–451 (1997). https://doi.org/10.1007/BF03401691

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401691

Keywords

Navigation