Skip to main content
Log in

The Role of Candidate Genes in the Etiology of Schizophrenia

  • Minireview
  • Published:
Molecular Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wildenaur DB, Schwab S, Wurl D, et al. (1991) Linkage analysis in schizophrenia, exclusion of 5q11-q13, 5q34-qter, 11q22, 23, Xpter and chrokmosome 19 in 15 systematically ascertained European families. Am. J. Hum. Genet. 49(Suppl): 363.

    Google Scholar 

  2. Moises HW, Gelertner J, Giuffra L, et al. (1991) No linkage between D2 dopamine receptor gene region and schizophrenia. Arch. Gen. Psychiatry 48: 643–647.

    Article  CAS  Google Scholar 

  3. Shaikh S, Gill M, Owen M, et al. Failure to find linkage between a functional polymorphism in the dopamine D4 receptor gene and schizophrenia. Am. J. Med. Genet. (Neuropsych. Genet.) 54: 8–11.

  4. Buckland PR, O’Donovan M, McGuffin P. (1992) Changes in dopamine D1, D2 and D3 receptor mRNA levels in rat brain following antipsychotic treatment. Psychopharmacology (Berl) 106: 479–483.

    Article  CAS  Google Scholar 

  5. Buckland PR, O’Donovan MC, McGuffin P. (1993) Clozapine and sulpiride up-regulate dopamine D3 receptor mRNA levels. Neuropharmacology 32: 901–907.

    Article  CAS  Google Scholar 

  6. Lannfelt L, Sokoloff P, Martres M, et al. (1992) Amino-acid substitution in the dopamine D3 receptor as a useful polymorphism for investigating psychiatric disorders. Psychiatr. Genet. 2: 249–256.

    Article  Google Scholar 

  7. Coon H, Byerley W, Holik J, et al. (1993) Linkage analysis between schizophrenia and 5 dopamine receptors. Am. J. Hum. Genet. 52: 327–334.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Crocq M-A, Mant R, Asherson P, et al. (1992) Association between schizophrenia and homozygosity at the dopamine D3 receptor gene. J. Med. Genet. 29: 858–860.

    Article  CAS  Google Scholar 

  9. Schaid DJ, Sommer SS. (1994) Comparison of statistics for candidate-gene association studies using cases and parents. Am. J. Hum. Genet. 55: 402–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mant R, Williams J, Asherson P, et al. (1994) Relationship between homozygosity at the dopamine D3 receptor gene and schizophrenia. Am. J. Med. Genet. 54: 21–26.

    Article  CAS  Google Scholar 

  11. Asherson P, Mant R, Holmans P, et al. (1996) Linkage, association and mutational analysis of the dopamine D3 receptor gene in schizophrenia. Mol. Psych. 1: 125–132.

    CAS  Google Scholar 

  12. Ravindranathan A, Coon H, DeLisi L, et al. (1994) Linkage analysis between schizophrenia and a microsatellite polymorphism for the D5 dopamine receptor gene. Psychiatr. Genet. 4: 77–80.

    Article  CAS  Google Scholar 

  13. Asherson P, Mant R, Owen M. (1995) A linkage study of the dopamine D5 receptor and schizophrenia. Psychiatr. Genet. 5: 46.

    Google Scholar 

  14. Kalsi G, Sherrington R, Mankoo BS, et al. (1996) Linkage study of the D5 dopamine receptor gene (DRD5) in multiplex Icelandic and English schizophrenia pedigrees. Am. J. Psych. 153: 107–109.

    Article  CAS  Google Scholar 

  15. Scambler PJ, Kelly D, Lindsay E, et al. (1992) Velo-cardio-facial syndrome associated with chromosome 22q11 deletions encompassing the DiGeorge locus. Lancet 339: 1138–1139.

    Article  CAS  Google Scholar 

  16. Kelly D, Goldberg R, Wilson D, et al. (1993) Confirmation that the velo-cardio-facial syndrome is associated with haplo-insufficiency of genes at chromosome 22q11. Am. J. Med. Genet. 45: 308–312.

    Article  CAS  Google Scholar 

  17. Shprintzen RJ, Goldberg R, Golding-Kushner KJ, et al. (1992) Late-onset psychosis in the velo-cardio-facial syndrome. Am. J. Med. Genet. 42: 141–142.

    Article  CAS  Google Scholar 

  18. Pulver AE, Nastadt G, Goldberg R, et al. (1994) Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J. Nerv. Ment. Dis. 182: 476–478.

    Article  CAS  Google Scholar 

  19. Matthysse S, Baldessarini RJ. (1972) S-adenosylmethionine and catechol-O-methyltransferase in schizophrenia. Am. J. Psych. 128: 1310–1312.

    Article  CAS  Google Scholar 

  20. Shopsin B, Wilk S, Gershon S, et al. (1973) Collaborative psychopharmacological studies exploring catecholamine metabolism in psychiatric disorders. In: Usdin E, Snyder S (eds) Frontiers in Catecholamine Research. Pergamon Press, New York, pp. 1173–1179.

    Chapter  Google Scholar 

  21. Poitou P, Assicot M, Bouhon C. (1974) Soluble and membrane catechol-O-methyltransferases in red blood cells of schizophrenic patients. Biomedicine 21: 91–93.

    CAS  PubMed  Google Scholar 

  22. White HL, McLeod MN, Davidson JRT. (1976) Catechol-O-methyltransferase in red blood cells of schizophrenic, depressed and normal human subjects. Br. J. Psych. 128: 184–187.

    Article  CAS  Google Scholar 

  23. Floderus Y, Ross SB, Wetterburg L. (1981) Erythrocyte catechol-O-methyltransferase activity in a Swedish population. Clin. Genet. 19: 389–392.

    Article  CAS  Google Scholar 

  24. Dunlop SR, Sattin A, Shea P, et al. (1981) Comparison of MAO, D beta H, and COMT activities in chronic schizophrenics selected on the basis of nailfold capillary pattern. Acta. Psychiatr. Scand. 64: 409–414.

    Article  CAS  Google Scholar 

  25. Lewander T, Von Pongracz G, Backstrom M, et al. (1981) Dopamine metabolism in red blood cells in schizophrenia. Clin. Genet. 19: 410–413.

    Article  CAS  Google Scholar 

  26. Baron M, Gruen R, Levitt M, et al. (1984) Erythrocyte catecholamine-O-methyltransferase activity in schizophrenia: Analysis of family data. Am. J. Psych. 141: 29–32.

    Article  CAS  Google Scholar 

  27. Eberhard G, Ross S, Saaf J, et al. (1989) Psychoses in twins. A 10 year clinical and biochemical follow-up study. Schiz. Res. 2: 367–374.

    Article  CAS  Google Scholar 

  28. Daniels JK, Williams NM, Williams J, et al. (1996) No evidence for allelic association between schizophrenia and a polymorphism determining high or low catechol-O-methyl-transferase activity. Am. J. Psych. 153: 268–270.

    Article  CAS  Google Scholar 

  29. Gaddum JH. (1954) Drugs antagonistic to 5-hydroxytryptamine. In: Wolstenholme GW (ed). Ciba Foundation Symposium on Hypertension. Little, Brown, Boston, pp. 75–77.

    Google Scholar 

  30. Roth BL, Meltzer HY. (1995) The role of serotonin in schizophrenia. In: Bloom FE, Kupfer DJ (eds). Psychopharmacology: The Fourth Generation of Progress. Raven Press, New York, pp. 1215–1228.

    Google Scholar 

  31. Arranz M, Collier D, Sodhi M, et al. (1995) Association between clozapine response and allelic variation in 5-HT2A receptor genes. Lancet 346: 281–282.

    Article  CAS  Google Scholar 

  32. Hallmayer J, Kennedy JL, Wetterberg L, et al. (1992) Exclusion of linkage between the serotonin 2 receptor and schizophrenia in a large Swedish kindred. Arch. Gen. Psych. 49: 216–219.

    Article  CAS  Google Scholar 

  33. Williams J, Spurlock G, McGuffin, et al. (1996) Association between schizophrenia and the 5-HT2A receptor gene in a large European sample. Lancet 347: 1294–1296.

    Article  CAS  Google Scholar 

  34. Inayama Y, Yoneda H, Ishida T, et al. (1994) An association between schizophrenia and a serotonin receptor DNA marker (5HTR2). Neuropsychopharmacology 10: 56s.

    Google Scholar 

  35. Malhotra AK, Goldman D, Buchanan R, et al. (1996) 5-HT2A receptor polymorphism and schizophrenia. Lancet 347: 1830–1831.

    Article  CAS  Google Scholar 

  36. Jonsson E, Nothen MM, Bunzel R, et al. (1996) 5HT2A receptor polymorphism and schizophrenia. Lancet 347: 1831.

    CAS  PubMed  Google Scholar 

  37. Arranz MJ, Lin M-W, Powell J, et al. (1996) 5HT2A receptor polymorphism and schizophrenia. Lancet 347: 1831–1832.

    CAS  PubMed  Google Scholar 

  38. Sasaki T, Hattori M, Fukuda R, et al. (1996) 5HT2A receptor polymorphism and schizophrenia. Lancet 347: 1832.

    Article  CAS  Google Scholar 

  39. Woolf B. (1955) On estimating the relation between blood groups and disease. Ann. Hum. Genet. 19: 251–253.

    Article  CAS  Google Scholar 

  40. Burnett PWJ, Harrison PJ. (1995) Genetic variation in the 5-HT2A receptor and response to clozapine. Lancet 346: 909.

    Article  Google Scholar 

  41. Nothen MM, Rietschel M, Erdmann J, et al. (1995) Genetic variation of the 5-HT2A receptor and response to clozapine. Lancet 346: 908–909.

    Article  CAS  Google Scholar 

  42. Asherson P, Walsh C, Williams J, et al. (1994) Imprinting and anticipation—Are they relevant to genetic studies of schizophrenia? Br. J. Psych. 164: 619–624.

    Article  CAS  Google Scholar 

  43. Bassett AS, Honer WG. (1994) Evidence for anticipation in schizophrenia. Am. J. Hum. Genet. 54: 864–870.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thibaut F, Martinez M, Petit M, et al. (1995) Further evidence for anticipation in schiziophrenia. Psych. Res. 59: 25–33.

    Article  CAS  Google Scholar 

  45. O’Donovan MC, Guy C, Craddock N, et al. (1995) Expanded CAG repeats in schizophrenia and bipolar disorder. Nat. Genet. 10: 380–381.

    Article  Google Scholar 

  46. Morris AG, Gaitonde E, McKenna PJ, et al. (1995) CAG repeat expansions and schizophrenia: Association with disease in females and with early age-at-onset. Hum. Mol. Genet. 4: 1957–1961.

    Article  CAS  Google Scholar 

  47. O’Donovan MC, Guy C, Craddock N, et al. (in press) Confirmation of association between expanded CAG/CTG repeats and both schizophrenia and bipolar disorder. Psychol. Med.

  48. Cardno AG, Murphy KC, Jones LA, et al. (1996) Expanded CAG/CTG repeats in schizophrenia: A study of clinical correlates. Br. J. Psych. 169(6): 766–771.

    Article  CAS  Google Scholar 

  49. Bowen T, Guy C, Speight G, et al. (1996) Expansion of 50 CAG/CTG repeats excluded in schizophrenia by application of a highly efficient approach using RED and a PCR screening set. Am. J. Hum. Genet. 59: 912–917.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the Medical Research Council (United Kingdom) for support via a Programme Grant. KM is an MRC Training Fellow.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, K.C., McGuffin, P. The Role of Candidate Genes in the Etiology of Schizophrenia. Mol Med 2, 665–669 (1996). https://doi.org/10.1007/BF03401651

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401651

Navigation