Skip to main content

Advertisement

Log in

Adverse Effects of Hypolipidaemic Drugs

  • Adverse Drug Experience Review
  • Published:
Medical Toxicology and Adverse Drug Experience Aims and scope Submit manuscript

Summary

Cholestyramine, colestipol, clofibrate, gemfibrozil, nicotinic acid (niacin), probucol, neomycin, and dextrothyroxine are the most commonly used drugs in the treatment of hyperlipoproteinaemic disorders. While adverse reaction data are available for all of them, definitive data regarding the frequency and severity of potential adverse effects from well-controlled trials using large numbers of patients (> 1000) are available only for cholestyramine, clofibrate, nicotinic acid and dextrothyroxine.

In adult patients treated with cholestyramine, gastrointestinal complaints, especially constipation, abdominal pain and unpalatability are most frequently observed. Continued administration along with dietary manipulation (e.g. addition of dietary fibre) and/or stool softeners results in diminished complaints during long term therapy. Large doses of cholestyramine (> 32 g/day) may be associated with malabsorption of fat-soluble vitamins. Most significantly, osteomalacia and, on rare occasions, haemorrhagic diathesis are reported with cholestyramine impairment of vitamin D and vitamin K absorption, respectively. Paediatric patients have been reported to experience hyperchloraemic metabolic acidosis or gastrointestinal obstruction. Concurrent administration of acidic drugs may result in their reduced bioavailability.

Serious adverse reactions to cloflbrate will probably limit its role in the future. Of particular concern are ventricular arrhythmias, induction of cholelithiasis and cholecystitis, and the potential for promoting gastrointestinal malignancy which far outweigh the reported benefits in preventing new or recurrent myocardial infarction, cardiovascular death and overall death. Patients with renal disease are particularly prone to myositis, secondary to alterations in protein binding and impaired renal excretion of cloflbrate. Drug interactions with coumarin anticoagulants and sulphonylurea compounds may produce bleeding episodes and hypoglycaemia, respectively.

Nicotinic acid produces frequent adverse effects, but they are usually not serious, tend to decrease with time, and can be managed easily. Dermal and gastrointestinal reactions are most common. Truncal and facial flushing are reported in 90 to 100% of treated patients in large clinical trials. Significant elevations of liver enzymes, serum glucose, and serum uric acid are occasionally seen with nicotinic acid therapy. Liver enzyme elevations are more common in patients given large dosage increases over short periods of time, and in patients treated with sustained release formulations. Effects on glucose and uric acid appear to be problematic, primarily in patients with pre-existing diabetes mellitus or gout.

Adverse drug reaction data for colestipol, gemfibrozil, probucol, and neomycin are derived from smaller clinical studies, and many of these studies are not adequately controlled to allow an accurate impression of risks associated with therapy. In contrast, dextrothyroxine was evaluated in over 1000 patients in the Coronary Drug Project (1972). Although the drug was shown to be effective in lowering serum cholesterol, excessive cardiovascular mortality was noted with dextrothyroxine. Therefore, this drug should be used cautiously, if at all, for the management of hyperlipoproteinaemia.

Gemfibrozil, a promising hypolipidaemic drug because of its action in lowering low density lipoprotein and very low density lipoprotein concentrations while elevating high density lipoprotein, is structurally similar to clofibrate and its long term use may be associated with similar liabilities. Adverse reactions reported with gemfibrozil to date are mild.

Few clinically significant adverse effects are reported with probucol administration. The most common effects are gastrointestinal in nature and include transient diarrhoea, flatulence, nausea and abdominal pain. However, the primary concerns with probucol relate to its effects on prolonging the QTc interval, its accumulation in high concentrations in adipose tissue, and its possible effects on reducing high density lipoproteins.

In doses used to treat hyperlipidaemia (0.5 to 2.0 g/day), neomycin is generally free of intolerable or serious side effects. Diarrhoea, which spontaneously resolves within 1 to 3 weeks of initiation of therapy, is the most frequently reported side effect. Despite concerns related to its potential for ototoxicity and nephrotoxicity, hypolipidaemic doses produce extremely low serum concentrations, and these problems are not reported in patients with normal renal function. Neomycin has been shown to significantly reduce the absorption of digitoxin when administered concurrently and up to 6 hours after neomycin ingestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhadeff L, Gualtieri CT, Lipton M. Toxic effects of water-soluble vitamins. Nutrition Reviews 42: 33–40, 1984

    PubMed  CAS  Google Scholar 

  • Azarnoff DL. Pharmacology of hypolipidemic drugs: introduction. Federation Proceedings 30: 827–828, 1971

    PubMed  CAS  Google Scholar 

  • Barber M, Mueller T, Gilmour Jr RF, Ziper DP. Electrophysiologic effects of probucol on monkey ventricle. (Abstract.) Circulation 64 (Suppl. IV): 123, 1981

    Google Scholar 

  • Bazzano G, Bazzano GD. Digitalis intoxication: treatment with a new steroid-binding resin. Journal of the American Medical Association 220: 828–830, 1972

    PubMed  CAS  Google Scholar 

  • Bechtol LD, Warner WL. Dextrothyroxine for lowering serum cholesterol. Angiology 20: 565–579, 1969

    PubMed  CAS  Google Scholar 

  • Bencze WL. Hypolipidemic agents. In Kritchevsky (Ed.) Hypolipidemic agents, p. 349, Springer, Berlin, 1975

  • Bernstein B, Zoger S. Hyperchloremic metabolic acidosis with cholestyramine therapy for biliary cholestasis. Correspondence. American Journal of Diseases of Children 132: 1220, 1978

    Google Scholar 

  • Bjornsson TD, Meffin PJ, Swezey S, Blaschke TF. Clofibrate displaces warfarin from plasma proteins in man: an example of a pure displacement interaction. Journal of Pharmacology and Experimental Therapeutics 210: 316–321, 1979

    PubMed  CAS  Google Scholar 

  • Bommer J, Speders H, Ehrke V. Treatment of hypercholesterolemia after myocardial infarction with D-thyroxine. Munchener Medizinische Wochenschrift 117: 139–142, 1975

    PubMed  CAS  Google Scholar 

  • Brensike JF, Levy RI, Kelsey SF, Passamani ER, Richardson JM, et al. Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI type II coronary intervention study. Circulation 69: 313–324, 1984

    PubMed  CAS  Google Scholar 

  • Bridgeman CJF, Rosen SM, Thorp JM. Complications during clofibrate treatment of nephrotic syndrome hyperlipoproteinaemia. Lancet 2: 506–509, 1972

    Google Scholar 

  • Brown MS, Goldstein JL. Drugs used in the treatment of hyperlipoproteinemias. In Goodman et al. (Eds) The pharmacological basis of therapeutics, 7th ed., pp. 827–845, McMillan Publishing Co., New York, 1985

    Google Scholar 

  • Browne KF, Prystowsky EN, Heger JJ, Cerimele BJ, Fineberg N, et al. Prolongation of the QT interval induced by probucol: demonstration of a method for determining QT interval change induced by a drug. American Heart Journal 107: 680–684, 1984

    PubMed  CAS  Google Scholar 

  • Brown-Grant K, Brennan RD, Yates FE. Simulation of thyroid hormone-binding interactions in human plasma. Journal of Clinical Endocrinology and Metabolism 30: 733–751, 1970

    PubMed  CAS  Google Scholar 

  • Caldwell JH, Bush CA, Greenberger NJ. Interruption of the enterohepatic circulation of digitoxin by cholestyramine. Journal of Clinical Investigation 50: 2638–2644, 1971

    PubMed  CAS  Google Scholar 

  • Cali TJ. Combined therapy with cholestyramine and warfarin. American Journal of Pharmacy 147: 166–169, 1975

    CAS  Google Scholar 

  • Carruthers SG, Dujovne CA. Cholestyramine and spironolactone and their combination in digitoxin elimination. Clinical Pharmacology and Therapeutics 27: 184–187, 1980

    PubMed  CAS  Google Scholar 

  • Carson JL, Strom BL. Techniques of postmarketing surveillance: an overview. Medical Toxicology 1: 237–246, 1986

    PubMed  CAS  Google Scholar 

  • Casdorph HR. The efficacy and safety of cholestyramine therapy in hyperlipidemic patients. (Abstract.) Annals of Internal Medicine 74: 818, 1971

    Google Scholar 

  • Charman RC, Mathews LB, Braeuler C. Nicotinic acid in the treatment of hypercholesterolemia. Angiology 23: 29–35, 1972

    PubMed  CAS  Google Scholar 

  • Christensen NA, Achor RWP, Berge KG, Mason HL. Nicotinic acid treatment of hypercholesterolemia. Journal of the American Medical Association 177: 546–550, 1961

    PubMed  CAS  Google Scholar 

  • Cihak RW, Beary FD. Elevated triiodothyronine and dextrothyroxine levels: a potential cause of iatrogenic hyperthyroidism. Southern Medical Journal 70: 256–257, 1977

    PubMed  CAS  Google Scholar 

  • Clouston WM, Lloyd HM. Cholestyramine induced hyperchloremic metabolic acidosis. Correspondence. Australian and New Zealand Journal of Medicine 15: 271, 1985

    CAS  Google Scholar 

  • Cohen BM. The clinical use of dextrothyroxine in hypercholesterolemic states: an eight-year appraisal. Journal of Clinical Pharmacology 9: 45–56, 1969

    CAS  Google Scholar 

  • Cohen MI, Winslow PR, Boley SJ. Intestinal obstruction associated with cholestyramine therapy. New England Journal of Medicine 280: 1285–1286, 1969

    PubMed  CAS  Google Scholar 

  • Committee of Principal Investigators (WHO).A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate. British Heart Journal 40: 1069–1118, 1978

    Google Scholar 

  • Compston JE, Horton LWL. Oral 25-hydroxyvitamin D3 in treatment of osteomalacia associated with ileal resection and cholestyramine therapy. Gastroenterology 74: 900–902, 1978

    PubMed  CAS  Google Scholar 

  • Compston JE, Thompson RPH. Intestinal absorption of 25-hydroxy-vitamin D and osteomalacia in primary biliary cirrhosis. Lancet 1: 721–724, 1977

    PubMed  CAS  Google Scholar 

  • Cooper EE, Michel AM. Colestipol hydrochloride, a new hypolipidemic drug: a two-year study — summary. Advances in Experimental Medicine and Biology 82: 191–194, 1977

    PubMed  CAS  Google Scholar 

  • Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease. Journal of the American Medical Association 231: 360–381, 1975

    Google Scholar 

  • Coronary Drug Project Research Group. The coronary drug project: findings leading to further modifications of its protocol with respect to dextrothyroxine. Journal of the American Medical Association 220: 996–1008, 1972

    Google Scholar 

  • Dahlen G, Gillnas T, Borresen AL, Berg K, Ericson C. Effect of gemfibrozil on serum lipid levels. Artery 7: 224–231, 1980

    PubMed  CAS  Google Scholar 

  • Daubresse JC, Daigneux JC, Bruwier M, Luyckx A, Lefebvre PJ. Clofibrate and diabetes control in patients treated with oral hypoglycaemic agents. British Journal of Clinical Pharmacology 7: 599–603, 1979

    PubMed  CAS  Google Scholar 

  • Daubresse JC, Luyckx AS, Lefebvre PJ. Potentiation of hypoglycemic effect of sulfonylureas by clofibrate. Correspondence. New England Journal of Medicine 294: 613, 1976

    CAS  Google Scholar 

  • Dobbins WO. Drug-induced steatorrhea. Gastroenterology 54: 1193–1195, 1968

    PubMed  CAS  Google Scholar 

  • Donald PR, Sellars SL. Streptomycin ototoxicity in the unborn child. South African Medical Journal 60: 316–318, 1981

    PubMed  CAS  Google Scholar 

  • Dordoni B, Willson RA, Thompson RPH, Williams R. Reduction of absorption of paracetamol by activated charcoal and cholestyramine: a possible therapeutic measure. British Medical Journal 3: 86–87, 1973

    PubMed  CAS  Google Scholar 

  • Dorr AE, Gundersen K, Schneider Jr JC, Spencer TW, Martin WB. Colestipol hydrochloride in hypercholesterolemic patients — effect on serum cholesterol and mortality. Journal of Chronic Diseases 31: 5–14, 1978

    PubMed  CAS  Google Scholar 

  • Dujovne CA, Atkins F, Wong B, DeCoursey S, Krehbiel P, et al. Electrocardiographic effects of probucol: a controlled prospective clinical trial. European Journal of Clinical Pharmacology 26: 735–739, 1984c

    PubMed  CAS  Google Scholar 

  • Dujovne CA, Chernoff SB, Krehbiel P, Jackson B, DeCoursey S, et al. Low-dose colestipol plus probucol for hypercholesterolemia. American Journal of Cardiology 53: 1514–1518, 1984b

    PubMed  CAS  Google Scholar 

  • Dujovne CA, Krehbiel P, DeCoursey S, Jackson B, Chernoff SB, et al. Probucol with colestipol in the treatment of hypercholesterolemia. Annals of Internal Medicine 100: 477–482, 1984a

    PubMed  CAS  Google Scholar 

  • Eastham RD. Warfarin dosage influenced by clofibrate plus age. Correspondence. Lancet 1: 1450, 1973

    CAS  Google Scholar 

  • Eaves ER, Korman MG. Cholestyramine induced hyperchloremic metabolic acidosis. Australian and New Zealand Journal of Medicine 14: 670–672, 1984

    PubMed  CAS  Google Scholar 

  • Eisalo A, Manninen V. A long-term trial of gemfibrozil in the treatment of hyperlipidaemias. Proceedings of the Royal Society of Medicine 69 (Suppl. 2): 49–52, 1976

    PubMed  Google Scholar 

  • Engelberg H. Effect of sodium D-thyroxine on serum cholesterol and low-density lipoproteins in man. Geriatrics 17: 711–714, 1962

    Google Scholar 

  • Engstrom J, Hellstrom K, Posse N, Sjovall J. Recurrent cholestasis of pregnancy. Acta Obstetricia et Gynecologica Scandinavica 49: 29–34, 1970

    PubMed  CAS  Google Scholar 

  • Fellin R, Briani G, Balestrieri P, Baggio G, Baiocchi MR, et al. Long-term effects of colestipol (U-26,597 A) on plasma lipids in familial type II hyperbetalipoproteinaemia. Atherosclerosis 22: 431–445, 1975

    PubMed  CAS  Google Scholar 

  • Fellin R, Gasparotto A, Valerio G, Baiocchi MR, Padrini R, et al. Effect of probucol treatment on lipoprotein cholesterol and drug levels in blood and lipoproteins in familial hypercholesterolaemia. Atherosclerosis 59: 47–56, 1986

    PubMed  CAS  Google Scholar 

  • Fenderson RW, Deutsch S, Menachemi E, Chin B, Samuel P. Effect of gemfibrozil on serum lipids in man. Angiology 33: 581–593, 1982

    PubMed  CAS  Google Scholar 

  • Fitzgerald JE, Sanyer JL, Schardein JL, Lake RS, et al. Carcinogen bioassay and mutagenicity studies with the hypolipidemic agent gemfibrozil. Journal of the National Cancer Institute 67: 1105–1116, 1981

    PubMed  CAS  Google Scholar 

  • Forrest JM. Drugs in pregnancy and lactation. Medical Journal of Australia 2: 138–141, 1976

    PubMed  CAS  Google Scholar 

  • Gallo DG, Bailey KR, Sheffner AJ. The interaction between cholestyramine and drugs. Proceedings of the Society for Experimental Biology and Medicine 120: 60–65, 1965

    PubMed  CAS  Google Scholar 

  • Gass JDM. Nicotinic acid maculopathy. American Journal of Ophthalmology 76: 500–510, 1973

    PubMed  CAS  Google Scholar 

  • Glueck CJ. Colestipol and probucol: treatment of primary and familial hypercholesterolemia and amelioration of atherosclerosis. Annals of Internal Medicine 96: 475–482, 1982

    PubMed  CAS  Google Scholar 

  • Glueck CJ, Ford Jr S, School D, Steiner P. Colestipol and cholestyramine resin: comparative effects in familial type II hyperlipoproteinemia. Journal of the American Medical Association 222: 676–681, 1972

    PubMed  CAS  Google Scholar 

  • Goldberg AP. Sherrard DJ, Hass LB, Brunzell JD. Control of clofibrate toxicity in uremic hypertriglyceridemia. Clinical Pharmacology and Therapeutics 21: 317–325, 1977

    CAS  Google Scholar 

  • Green PHR, Tall AR. Drugs, alcohol and malabsorption. American Journal of Medicine 67: 1066–1076, 1979

    PubMed  CAS  Google Scholar 

  • Greenberger P, Patterson R. Safety of therapy for allergic symptoms during pregnancy. Annals of Internal Medicine 89: 234–237, 1978

    PubMed  CAS  Google Scholar 

  • Gross L, Brotman M. Hypoprothrombinemia and hemorrhage associated with cholestyramine therapy. Annals of Internal Medicine 72: 95–96, 1970

    PubMed  CAS  Google Scholar 

  • Gugler R. Clinical pharmacokinetics of hypolipidaemic drugs. Clinical Pharmacokinetics 3: 425–439, 1978

    PubMed  CAS  Google Scholar 

  • Gugler R, Shoeman DW, Huffman DH, Cohlmia JB, Azarnoff DL. Pharmacokinetics of drugs in patients with the nephrotic syndrome. Journal of Clinical Investigation 55: 1182–1189, 1975

    PubMed  CAS  Google Scholar 

  • Hall MJ, Nelson LM, Rusell RI, Howard AN. Gemfibrozil: the effect on biliary cholesterol saturation of a new lipid-lowering agent and its comparison with clofibrate. Atherosclerosis 39: 511–516, 1981

    PubMed  CAS  Google Scholar 

  • Hall WH, Shapell SD, Doherty JE. Effect of cholestyramine on digoxin absorption and excretion in man. American Journal of Cardiology 39: 213–216, 1977

    PubMed  CAS  Google Scholar 

  • Hankins JH, Heise CM, Cowman RJ. Iatrogenic hyperthyroidism secondary to dextrothyroxine administration. Clinical Nuclear Medicine 9: 17–19, 1984

    PubMed  CAS  Google Scholar 

  • Harris JL. Toxic amblyopia associated with administration of nicotinic acid. American Journal of Ophthamology 55: 133–134, 1963

    CAS  Google Scholar 

  • Harris RS, Gilmore HR, Bricker LA, Kiem IM, Rubin E. Long-term oral administration of probucol [4,4′-(isopropylidenedithio) bis (2,6-di-t-butylphenol)] (DH-581) in the management of hypercholesterolemia. Journal of the American Geriatrics Society 22: 167–175, 1974

    PubMed  Google Scholar 

  • Hartline JV. Hyperchloremic, metabolic acidosis, and cholestyramine. Correspondence. Journal of Pediatrics 89: 155, 1976

    CAS  Google Scholar 

  • Harvengt C, Desager J-P. Colestipol in familial type II hyperlipoproteinemia: a three-year trial. Clinical Pharmacology and Therapeutics 20: 310–314, 1976

    PubMed  CAS  Google Scholar 

  • Heaton KW, Lever JV, Barnard D. Osteomalacia associated with cholestyramine therapy for postileectomy diarrhea. Gastroenterology 62: 642–646, 1972

    PubMed  CAS  Google Scholar 

  • Heel RC, Brogden RN, Pakes GE, Speight TM, Avery GS. Colestipol: a review of its pharmacological properties and therapeutic efficacy in patients with hypercholesterolaemia. Drugs 19: 161–180, 1980

    PubMed  CAS  Google Scholar 

  • Heel RC, Brogden RN, Speight TM, Avery GS. Probucol: a review of its pharmacological properties and therapeutic use in patients with hypercholesterolaemia. Drugs 15: 409–428, 1978

    PubMed  CAS  Google Scholar 

  • Hoeg JA, Maher MB, Bailey KR, Zech LA, Gregg RE, et al. Effects of combination cholestyramine-neomycin on plasma lipoprotein concentrations in type II hyperlipoproteinemia. American Journal of Cardiology 55: 1282–1286, 1985

    PubMed  CAS  Google Scholar 

  • Hoeg JM, Maher MB, Bou E, Zech LA, Bailey KR, et al. Normalization of plasma lipoprotein concentrations in patients with type II hyperlipoproteinemia by combined use of neomycin and niacin. Circulation 70: 1004–1011, 1984a

    PubMed  CAS  Google Scholar 

  • Hoeg JM, Schaefer EJ, Romano CA, Bou E, Pikus AM, et al. Neomycin and plasma lipoproteins in type II hyperlipoproteinemia. Clinical Pharmacology and Therapeutics 36: 555–565, 1984b

    PubMed  CAS  Google Scholar 

  • Hotz W. Nicotinic acid and its derivatives: a short survey. Advances in Lipid Research 20: 195–217, 1983

    PubMed  CAS  Google Scholar 

  • Houin G, Tillement JP. Clofibrate and enzymatic induction in man. International Journal of Clinical Pharmacology 16: 150–154, 1978

    CAS  Google Scholar 

  • Howard EJ, Brown SM. Clofibrate-induced antinuclear factor and lupus-like syndrome. Journal of the American Medical Association 226: 1358–1359, 1973

    PubMed  CAS  Google Scholar 

  • Hunninghake DB, Bell G, Olson L. Effect of probucol on plasma lipids and lipoproteins in type IIb hyperlipoproteinemia. Atherosclerosis 37: 469–474, 1980

    PubMed  CAS  Google Scholar 

  • Hunninghake DB, King S. Effect of cholestyramine and colestipol on the absorption of methyldopa and hydrochlorothiazide. (Abstract.) Pharmacologist 20: 220, 1978

    Google Scholar 

  • Hunninghake DB, King S, LaCroix K. The effect of cholestyramine and colestipol on the absorption of hydrochlorothiazide. International Journal of Clinical Pharmacology, Therapeutics and Toxicology 20: 151–154, 1982

    CAS  Google Scholar 

  • Hunninghake DB, Pollack E. Effect of bile acid sequestering agents on the absorption of aspirin, tolbutamide and warfarin. (Abstract.) Federation Proceedings 36: 996, 1977

    Google Scholar 

  • Jain AK, Ryan JR, McMahon FG. Potentiation of hypoglycemic effect of sulfonylureas by clofibrate. Correspondence. New England Journal of Medicine 294: 613, 1976

    Google Scholar 

  • Janke EM. Reaction to clofibrate. Correspondence. Canadian Medical Association Journal 111: 752, 1974

    CAS  Google Scholar 

  • Johansson C, Adamsson U, Stierner U, Lindsten T. Interaction by cholestyramine on the uptake of hydrocortisone in the gastrointestinal tract. Acta Medica Scandinavica 204: 509–512, 1978

    PubMed  CAS  Google Scholar 

  • Jones DB, Simpson HCR, Slaughter P, Lousley S, Carter RD, et al. A comparison of cholestyramine and probucol in the treatment of familial hypercholesterolaemia. Atherosclerosis 53: 1–7, 1984

    PubMed  CAS  Google Scholar 

  • Jones HC. Intrauterine ototoxicity: a case report and review of the literature. Journal of the National Medical Association 65: 201–203, 1973

    PubMed  CAS  Google Scholar 

  • Kane JP, Malloy MJ, Tun P, Phillips NR, Freedman DD, et al. Normalization of low-density lipoprotein levels in heterozygous familial hypercholesterolemia with a combined drug regimen. New England Journal of Medicine 304: 251–258, 1981

    PubMed  CAS  Google Scholar 

  • Kauffman RE, Azarnoff DL. Effect of colestipol on gastrointestinal absorption of chlorothiazide in man. Clinical Pharmacology and Therapeutics 14: 886–890, 1973

    PubMed  CAS  Google Scholar 

  • Kaukola S, Manninen V, Malkonen A, Ehnholm C. Gemfibrozil in the treatment of dyslipidaemias in middle-aged male survivors of myocardial infarction. Acta Medica Scandinavica 209: 69–73, 1981

    PubMed  CAS  Google Scholar 

  • Kleinman PK. Cholestyramine and metabolic acidosis. Correspondence. New England Journal of Medicine 290: 861, 1974

    CAS  Google Scholar 

  • Klemens UH, von Lowis of Menar P. Therapy of hyperlipoproteinemia of types IIa and IIb with highly purified D-thyroxine (D-T4): a controlled study in outpatients. Deutsche Medizinische Wochenschrift 99: 487–493, 1974

    PubMed  CAS  Google Scholar 

  • Knopp RH, Ginsberg J, Albers JJ, Hoff C, Ogilvie JT, et al. Contrasting effects of unmodified and time-release forms of niacin on lipoproteins in hyperlipidemic subjects: clues to the mechanism of action of niacin. Metabolism 34: 642–650, 1985

    PubMed  CAS  Google Scholar 

  • Kohn RM, Montes M. Hepatic fibrosis following long acting nicotinic acid therapy. American Journal of the Medical Sciences 258: 94–99, 1969

    PubMed  CAS  Google Scholar 

  • Konttinen A, Kuisma I, Ralli R, Pohjola S, Ojala K. The effect of gemfibrozil on serum lipids in diabetic patients. Annals of Clinical Research 11: 240–245, 1979

    PubMed  CAS  Google Scholar 

  • Koschinsky T, Vogelberg KH, Gries FA. Therapy of primary hyperlipoproteinemia type IIa and IIb with D-thyroxine. Deutsche Medizinische Wochenschrift 99: 494–496, 1974

    PubMed  CAS  Google Scholar 

  • Krikler DM, Lefevre D, Lewis B. Dextrothyroxine with propranolol in the treatment of hypercholesterolaemia. Lancet 1: 934–936, 1971

    PubMed  CAS  Google Scholar 

  • Kuo PT, Hayase K, Kostis JB, Moreyra AE. Use of combined diet and colestipol in long-term (7–71/2 years) treatment of patients with type II hyperlipoproteinemia. Circulation 59: 199–211, 1979

    PubMed  CAS  Google Scholar 

  • Langer T, Levy RI. Acute muscular syndrome associated with the administration of clofibrate. New England Journal of Medicine 279: 856–858, 1978

    Google Scholar 

  • La Rosa JC, Brown WV, Frommer PL, Levy RI. Clofibrate-induced ventricular arrhythmia. American Journal of Cardiology 23: 266–269, 1969

    PubMed  Google Scholar 

  • Leiss O, von Bergmann K, Gnasso A, Augustin J. Effect of gemfibrozil on biliary lipid metabolism in normolipemic subjects. Metabolism 34: 74–82, 1985

    PubMed  CAS  Google Scholar 

  • Levine MN, Raskob G, Hirsh J. Risk of haemorrhage associated with long term anticoagulant therapy. Drugs 30: 444–460, 1985

    PubMed  CAS  Google Scholar 

  • Lewis JE. Long-term use of gemfibrozil (Lopid®) in the treatment of dyslipidemia. Angiology 33: 603–612, 1982

    PubMed  CAS  Google Scholar 

  • Lindenbaum J, Maulitz RM, Butler Jr VP. Inhibition of digoxin absorption by neomycin. Gastroenterology 71: 399–404, 1976

    PubMed  CAS  Google Scholar 

  • Lindenbaum J, Tse-Eng D, Butler Jr VP, Rund DG. Urinary excretion of reduced metabolites of digoxin. American Journal of Medicine 71: 67–74, 1981

    PubMed  CAS  Google Scholar 

  • Lipid Research Clinics Program. The lipid research clinics coronary primary prevention trial results. I. Reduction in incidence of coronary heart disease. Journal of the American Medical Association 251: 351–364, 1984

    Google Scholar 

  • Lithell H, Vessby B, Boberg J, Hellsing K. The effects of colestipol when combined with clofibrate in the treatment of severe hyperlipidemia. Atherosclerosis 37: 175–186, 1980

    PubMed  CAS  Google Scholar 

  • Lloyd-Still JD. Cholestyramine therapy and intestinal obstruction in infants. Pediatrics 59: 626–627, 1977

    PubMed  CAS  Google Scholar 

  • Lutz EE, Margolis AJ. Obstetric hepatosis: treatment with cholestyramine and interim response to steroids. Obstetrics and Gynecology 33: 64–71, 1969

    PubMed  CAS  Google Scholar 

  • MacGillivray MH. Thyroid dysfunction in the neonatal period. Clinics in Perinatology 2: 15–21, 1975

    CAS  Google Scholar 

  • Manninen V, Malkonen M, Eisalo A, Virtamo J, Tuomilehto J, et al. Gemfibrozil in the treatment of dyslipidaemia: a 5-year follow-up study. Acta Medica Scandinavica 668 (Suppl.): 82–87, 1982

    PubMed  CAS  Google Scholar 

  • Marks J, Howard AN. A comparative study of gemfibrozil and clofibrate in the treatment of hyperlipidaemia in patients with maturity-onset diabetes. Research and Clinical Forums 4: 95–103, 1982

    Google Scholar 

  • Marshall FN, Lewis JE. Sensitization to epinephrine-induced ventricular fibrillation induced by probucol in dogs. Toxicology and Applied Pharmacology 24: 594–602, 1973

    PubMed  CAS  Google Scholar 

  • Matsui MS, Rozovski SJ. Drug-nutrient interaction. Clinical Therapeutics 4: 423–440, 1982

    PubMed  CAS  Google Scholar 

  • McCaughan D. Probucol in the long-term management of hypercholesterolemia. In Noseda et al. (Eds) Diet and drugs in atherosclerosis, pp. 175–179, Raven Press, New York, 1980

    Google Scholar 

  • McCaughan D. The long-term effects of probucol on serum lipid levels. Archives of Internal Medicine 141: 1428–1432, 1981

    PubMed  CAS  Google Scholar 

  • McCaughan D. Nine years of treatment with probucol. Artery 10: 56–70, 1982

    PubMed  CAS  Google Scholar 

  • McEvoy GK, McQuarrie GM (Eds). Drug Information 86, p. 742, American Society of Hospital Pharmacists, Bethesda, 1986

    Google Scholar 

  • McGarvey JFX. Premature contractions and clofibrate. Correspondence. Journal of the American Medical Association 225: 638, 1973

    CAS  Google Scholar 

  • Mellies MJ, Gartside PS, Glatfelter L, Vink P, Guy G, et al. Effects of probucol on plasma cholesterol, high and low density lipoprotein cholesterol, and apolipoproteins A1 and A2 in adults with primary familial hypercholesterolemia. Metabolism 29: 956–963, 1980

    PubMed  CAS  Google Scholar 

  • Merten DF, Grossman H. Intestinal obstruction associated with cholestyramine therapy. American Journal of Roentgenology 134: 827–828, 1980

    PubMed  CAS  Google Scholar 

  • Miettinen TA. Effects of neomycin alone and in combination with cholestyramine on serum cholesterol and fecal steroids in hypercholesterolemic subjects. Journal of Clinical Investigation 64: 1485–1493, 1979

    PubMed  CAS  Google Scholar 

  • Miller NE, Clifton-Bligh P, Nestel PJ, Whyte HM. Controlled clinical trial of a new bile acid-sequestering resin, colestipol, in the treatment of hypercholesterolaemia. Medical Journal of Australia 1: 1223–1227, 1973

    PubMed  CAS  Google Scholar 

  • Moghissi KS. Risks and benefits of nutritional supplements during pregnancy. Obstetrics and Gynecology 58 (Suppl.): 68s–78s, 1981

    PubMed  CAS  Google Scholar 

  • Molello JA, Gerbig CC, Robinson VB. Toxicity of [4,4′-(isopropylidenedithio) bis(2,6-di-t-butylphenol)] in mice, rats, dogs and monkeys: demonstration of a species-specific phenomenon. Toxicology and Applied Pharmacology 24: 590–593, 1973

    PubMed  CAS  Google Scholar 

  • Nash DT. Safety and efficacy of probucol during one year of administration. Journal of Clinical Pharmacology 14: 470–475, 1974

    PubMed  CAS  Google Scholar 

  • Nelson JA. Effect of cholestyramine on telepaque oral cholecystography. American Journal Roentgenology Radium Therapy and Nuclear Medicine 122: 333–334, 1974

    CAS  Google Scholar 

  • Northcutt RC, Stiel JN, Hollifield JW, Stant Jr EG. The influence of cholestyramine on thyroxin absorption. Journal of the American Medical Association 208: 1857–1861, 1969

    PubMed  CAS  Google Scholar 

  • Nye ER, Sutherland WHF, Temple WA. The treatment of hyperlipoproteinaemia with gemfibrozil compared with placebo and clofibrate. New Zealand Medical Journal 92: 345–349, 1980

    PubMed  CAS  Google Scholar 

  • Oliver MF, Roberts SD, Hayes D, Pantridge JF, Suzman MM, et al. Effect of atromid and ethylchlorphenoxyisobutyrate on anticoagulant requirements. Lancet 1: 143–144, 1963

    PubMed  CAS  Google Scholar 

  • Olsson AG, Carlson LA, Anggard E, Ciabattioni G. Prostaglandin production augmented in the short term by nicotinic acid. Lancet 2: 565–567, 1983

    PubMed  CAS  Google Scholar 

  • Olsson AG, Rossner S, Walldius G, Carlson LA. Effect of gemfibrozil on lipoprotein concentrations in different types of hyperlipoproteinemia. Proceedings of the Royal Society of Medicine 69 (Suppl. 2): 28–31, 1976

    PubMed  CAS  Google Scholar 

  • O’Reilly RA, Sahud MA, Robinson AJ. Studies on the interaction of warfarin and clofibrate in man. Thrombosis et Diathesis Haemorrhagica 27: 309–318, 1972

    PubMed  Google Scholar 

  • Owens JC, Neely WB, Owen WR. Effect of sodium dextrothyroxine in patients receiving anticoagulants. New England Journal of Medicine 266: 76–79, 1962

    PubMed  CAS  Google Scholar 

  • Palmer RH. Prevalence of gallstones in hyperlipidemia and incidence during treatment with clofibrate and/or cholestyramine. Transactions of the Association of American Physicians 91: 424–432, 1978

    PubMed  CAS  Google Scholar 

  • Pardue WO. Severe liver dysfunction during nicotinic acid therapy. Journal of the American Medical Association 175: 137–138, 1961

    PubMed  CAS  Google Scholar 

  • Parker PH, Ghishan FK, Shanks D, Greene HL. Eosinophilia associated with cholestyramine. Clinical Pediatrics 20: 675–676, 1981

    PubMed  CAS  Google Scholar 

  • Parsons WB. Studies on nicotinic acid used in hypercholesterolemia: changes in hepatic function, carbohydrate tolerance and uric acid metabolism. Archives of Internal Medicine 107: 85–99, 1961

    Google Scholar 

  • Parsons WB. Effect of probucol in hyperlipidemic patients during two years of administration. American Heart Journal 96: 213–217, 1978

    PubMed  Google Scholar 

  • Parsons Jr WB, Flinn JH. Reduction in elevated blood cholesterol levels by large doses of nicotinic acid: preliminary report. Journal of the American Medical Association 165: 234–238, 1957

    PubMed  CAS  Google Scholar 

  • Patterson DJ, Dew EW, Gyorkey F, Graham DY. Niacin hepatitis. Southern Medical Journal 76: 239–241, 1983

    PubMed  CAS  Google Scholar 

  • Pierides AM, Alvarez-Ude F, Kerr DNS, Skillen AW. Clofibrate induced muscle damage in patients with chronic renal failure. Lancet 2: 1279–1282, 1975

    PubMed  CAS  Google Scholar 

  • Pieroni RE, Fisher JG. Use of cholestyramine resin in digitoxin toxicity. Journal of the American Medical Association 245: 1939–1940, 1981

    PubMed  CAS  Google Scholar 

  • Polachek AA, Katz HM, Sack J, Selig J, Littman ML. Probucol in the long-term treatment of hypercholesterolaemia. Current Medical Research and Opinion 1: 323–330, 1973

    PubMed  CAS  Google Scholar 

  • Poley JR. Cholestyramine and intestinal obstruction. Correspondence. Pediatrics 61: 332, 1978

    CAS  Google Scholar 

  • Primack WA, Gartner LM, McGurk HE, Spitzer A. Hypernatremia associated with cholestyramine therapy. Journal of Pediatrics 90: 1024–1025, 1977

    Google Scholar 

  • Rado JP, Szende L. Inhibition of clofibrate-induced antidiuresis by glybenclamide in patients with pituitary diabetes insipidus. Journal of Clinical Pharmacology 14: 290–295, 1974

    PubMed  CAS  Google Scholar 

  • Ramirez EA, Garcia Pont PH, Norat FA. A 5-year double blind controlled clinical trial of D-thyroxine on euthyroid coronary subjects: final report. Boletin — Asociacion Medica de Puerto Rico 64: 64–73, 1972

    PubMed  CAS  Google Scholar 

  • Reinhardt III DJ. The use of dextro-thyroxine (Choloxin) in cardiovascular disease: report of a clinical study. Delaware Medical Journal 40: 63–67, 1968

    PubMed  Google Scholar 

  • Reynolds JEF (Ed.). Probucol. In Martindale, the extra pharmacopoeia, 28th ed., p. 414, The Pharmaceutical Press, London, 1982

    Google Scholar 

  • Riesen WF, Keller M, Mordasini R. Probucol in hypercholesterolemia. Atherosclerosis 36: 201–207, 1980

    PubMed  CAS  Google Scholar 

  • Rivin AU. Jaundice occurring during nicotinic acid therapy for hypercholesterolemia. Journal of the American Medical Association 170: 2088–2089, 1959

    PubMed  CAS  Google Scholar 

  • Runeberg L, Miettinen TA, Nikkila EA. Effect of cholestyramine on mineral excretion in man. Acta Medica Scandinavica 192: 71–76, 1972

    PubMed  CAS  Google Scholar 

  • Ryan JR, Jain AK, McMahon FG. Long-term treatment of hypercholesterolemia with colestipol hydrochloride. Clinical Pharmacology and Therapeutics 17: 83–87, 1975

    PubMed  CAS  Google Scholar 

  • Sachs BA, Wolfman L. Colestipol therapy of hyperlipidemia in man. Proceedings of the Society for Experimental Biology and Medicine 147: 694–697, 1974

    PubMed  CAS  Google Scholar 

  • Sackett DL. Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest 89 (Suppl.): 2s–3s, 1986

    PubMed  CAS  Google Scholar 

  • Samuel P. Effects of gemfibrozil on serum lipids. American Journal of Medicine 74 (Suppl. 5A): 23–27, 1983

    PubMed  CAS  Google Scholar 

  • Samuel P. Treatment of hypercholesterolaemia with neomycin: a time for reappraisal. New England Journal of Medicine 301: 595–597, 1979

    PubMed  CAS  Google Scholar 

  • Samuel P, Holtzman CM, Goldstein J. Long-term reduction of serum cholesterol levels of patients with atherosclerosis by small doses of neomycin. Circulation 35: 938–945, 1967

    PubMed  CAS  Google Scholar 

  • Samuel P, Holtzman CM, Meilman E, Sekowski I. Reduction of serum cholesterol and triglyceride levels by the combined administration of neomycin and clofibrate. Circulation 41: 109–114, 1970

    PubMed  CAS  Google Scholar 

  • Schade RWB, van’t Laar A, Majoor CLH, Jansen AP. A comparative study of the effects of cholestyramine and neomycin in the treatment of type II hyperlipoproteinaemia. Acta Medica Scandinavica 199: 175–180, 1976

    PubMed  CAS  Google Scholar 

  • Schwandt P. Drug interactions and side effects of hypolipidemic drugs. International Journal of Clinical Pharmacology and Biopharmacy 17: 351–356, 1979

    PubMed  CAS  Google Scholar 

  • Schrogie JJ, Soloman HM. The anticoagulant response to bishydroxycoumarin. II. The effect of D-thyroxine, clofibrate, and norethandrolone. Clinical Pharmacology and Therapeutics 8: 70–77, 1967

    CAS  Google Scholar 

  • Sekowski I, Samuel P. Clofibrate-induced acute muscular syndrome. American Journal of Cardiology 30: 572–574, 1972

    PubMed  CAS  Google Scholar 

  • Sigroth K. Effect of clonidine on nicotinic acid flushing. Correspondence. Lancet 2: 58, 1974

    CAS  Google Scholar 

  • Smith AF, Macfie WG, Oliver MF. Clofibrate, serum enzymes, and muscle pain. British Medical Journal 2: 86–88, 1970

    PubMed  Google Scholar 

  • Sokoll MD, Gergis SD. Antibiotics and neuromuscular function. Anesthesiology 55: 148–159, 1981

    PubMed  CAS  Google Scholar 

  • Soloman HM, Abrams WB. Interaction between digitoxin and other drugs in man. American Heart Journal 83: 277–280, 1972

    Google Scholar 

  • Solomon RB, Rosner F. Massive hemorrhage and death during treatment with clofibrate and warfarin. New York State Journal of Medicine 73: 2002–2003, 1973

    PubMed  CAS  Google Scholar 

  • Starr P. Cardiac tolerance for cholesteropenic doses of dextrothyroxine. Journal of Clinical Pharmacology 10: 400–407, 1970

    CAS  Google Scholar 

  • Stein EA, Heimann KW. Colestipol, clofibrate, cholestyramine and combination therapy in the treatment of familial hyperbetalipoproteinaemia. South African Medical Journal 49: 1252–1256, 1975

    PubMed  CAS  Google Scholar 

  • Svedmyr N, Harthon L, Lundholm L. Dose response relationship between concentration of free nicotinic acid concentration of plasma and some metabolic and circulatory effects after administration of nicotinic acid and pentaepythritol tetranicotinate in man. In Gey & Carlson (Eds) Metabolic effects of nicotinic acid and its derivatives, p. 1085–1098, Hans Huber, Bern, 1971

    Google Scholar 

  • Tedeschi RE, Martz BL, Taylor HA, Cerimele BJ. Safety and effectiveness of probucol as a cholesterol lowering agent. Artery 10: 22–34, 1982

    PubMed  CAS  Google Scholar 

  • Thomas FB, McCullough FS, Greenberger NJ. Inhibition of the intestinal absorption of inorganic and hemoglobin iron by cholestyramine. Journal of Laboratory and Clinical Medicine 78: 70–80, 1971

    PubMed  CAS  Google Scholar 

  • Thomas FB, Salsburey D, Greenberger NJ. Inhibition of iron absorption by cholestyramine: demonstration of diminished iron stores following prolonged administration. American Journal of Digestive Diseases 17: 263–269, 1972

    PubMed  CAS  Google Scholar 

  • Thompson WG. Effect of cholestyramine on absorption of 3H digoxin in rats. American Journal of Digestive Diseases 18: 851–856, 1973

    PubMed  CAS  Google Scholar 

  • Ti TY, Giles HG, Sellers EM. Probable interaction of loperamide and cholestyramine. Canadian Medical Association Journal 119: 607–608, 1978

    PubMed  CAS  Google Scholar 

  • Torstila I, Kaukola S, Manninen V, Virtamo J, Malkonen M. Plasma prekallikrein, kallikrein inhibitors, kininogen and lipids during gemfibrozil treatment in type II dyslipidaemia. Acta Medica Scandinavica 668 (Suppl.): 123–129, 1982

    PubMed  CAS  Google Scholar 

  • Udall JA. Drug interference with warfarin therapy. Clinical Medicine 77: 20–25, 1970

    CAS  Google Scholar 

  • van Bever RJ, Duchateau AMJA, Pluym BFM, Merkus FWHM. The effect of colestipol on digitoxin plasma levels. Arzneimittel-Forschung 26: 1891–1893, 1976

    PubMed  Google Scholar 

  • Vecchio TJ, Linden CV, O’Connell MJ, Heilman J. Comparative efficacy of colestipol and clofibrate in type IIa hyperlipoproteinemia. Archives of Internal Medicine 142: 721–723, 1982

    PubMed  CAS  Google Scholar 

  • Vessby B, Lithell H, Boberg J, Hellsing K, Werner I. Gemfibrozil as a lipid lowering compound in hyperlipoproteinaemia: a placebo controlled cross-over trial. Proceedings of the Royal Society of Medicine 69 (Suppl. 2): 32–37, 1976

    PubMed  Google Scholar 

  • Virtamo J, Manninen V, Malkonen M. A placebo-controlled, rising-dose, double-blind trial with gemfibrozil in dieting patients with primary hyperlipoproteinemia. Vascular Medicine 2: 22–27, 1984

    Google Scholar 

  • Wardell WM, Tsianco MC, Anavekar SN, Davis HT. Postmarketing surveillance of new drugs: I. Review of objectives and methodology. Journal of Clinical Pharmacology 19: 85–94, 1979

    CAS  Google Scholar 

  • Watermeyer GS, Mann JI, Truswell AS, Levy I. Type IIa hyperlipoproteinaemia: an evaluation of four therapeutic regimens. South African Medical Journal 49: 631–634, 1975

    PubMed  CAS  Google Scholar 

  • West RJ, Fosbrooke AS, Lloyd JK. Treatment of children with familial hypercholesterolemia. Postgraduate Medical Journal 51 (Suppl.): 82–87, 1975

    CAS  Google Scholar 

  • West RJ, Lloyd JK. Use of cholestyramine in treatment of children with familial hypercholesterolemia. Archives of Disease in Children 48: 370–374, 1973

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knodel, L.C., Talbert, R.L. Adverse Effects of Hypolipidaemic Drugs. Drugs 2, 10–32 (1987). https://doi.org/10.1007/BF03259858

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259858

Keywords

Navigation