Skip to main content
Log in

Modeling Deformation in Two-Phase Alloys

  • Material
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

There are a number of two-phase alloys which are technologically important. These include α-β titanium alloys and two-phase steels. Modeling of deformation of such alloys, however, is a difficult task for the simple reason that a number of factors have to be considered simultaneously. Whenever a metal consisting of more than one-phase with different stress-strain behavior is subjected to stress, neither the stresses nor the strains are constant. The softer phase deforms more than the harder phase. The actual stress and strain distributions depend on the morphology of phases. Therefore, the simple law of mixtures rule is inadequate to study stress/strain behavior in these two phase materials. The Finite Element Method (FEM), which has been successfully used for stress analysis, appears to be a viable tool for studying stress-strain behavior of two-phase materials. Some of the predictions of FEM were corroborated by experiment. With some improvements in computer programs dealing with FEM, this method can be applied for various problems of stress-strain and fracture behavior in two-phase materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jinoch, S. Ankem and H. Margolin, Mater. Science & Eng., 34 (1978), p. 203.

    Article  Google Scholar 

  2. R.G. Davies, Metall. Trans., 9A (1978), p. 41.

    Google Scholar 

  3. R.G. Davies, Metall. Trans., 9A (1978), p. 451.

    Google Scholar 

  4. R.G. Davies, Metall. Trans., 9A (1978), p. 67.

    Google Scholar 

  5. H.W. Hayden and S. Floreen, Metall. Trans., 1 (1970), p. 1955.

    Article  Google Scholar 

  6. A.R. Marder, Metall. Trans., 12A (1981), p. 1509.

    Google Scholar 

  7. A.H. Yegneswaran and K. Tangri, Metall. Trans., 14A (1983), p. 2407.

    Google Scholar 

  8. A.H. Yegneswaran and K. Tangri, Metal Science, 18 (1984), p. 161.

    Google Scholar 

  9. S. Ankem and H. Margolin, Metall. Trans., 13A (1982), p. 595.

    Google Scholar 

  10. D. Tseng and K. Tangri, Metall. Trans., 13A (1982), p. 1077.

    Google Scholar 

  11. I. Tamura, Y. Tomota and M. Ogawa, Proc. Third International Conference on Strength of Metals & Alloys, Inst, of Metal, London, 1 (1973), p. 611.

    Google Scholar 

  12. R.N. Wright and J.R. Wood, Metall. Trans., 8A (1977), p. 2007.

    Google Scholar 

  13. A.A. Hussein, Metall. Trans., 13A (1982), p. 847.

    Google Scholar 

  14. M.F. Ashby, Phil. Mag., 21 (1970), p. 399.

    Article  Google Scholar 

  15. I. Tamura, Y. Tomota, A. Akao, Y. Yamoka, M. Ogawa and S. Kanatoni, Trans. Iron & Steel Inst., Japan, 13 (1973), p. 283.

    Google Scholar 

  16. B. Karlsson and B.O. Sandstrom, Mater. Sci. & Eng., 16 (1974), p. 161.

    Article  Google Scholar 

  17. Y. Tomota, K. Kuroki and I. Tamura, J. Iron & Steel Inst., Japan, 61 (1975), p. 107.

    Google Scholar 

  18. T. Nakamura and K. Wakasa, Trans. Iron & Steel Inst., Japan, 16 (1976), p. 134.

    Google Scholar 

  19. H. Fischmeister and B. Karlsson, Z. Metallk., 68 (1977), p. 311.

    Google Scholar 

  20. T. Inoue and S. Kinostita, Trans. Iron & Steel Inst., Japan, 17 (1977), p. 245.

    Google Scholar 

  21. J.J. Petrovic and A.K. Vasudevan, Mater. Sci. & Eng., 34 (1978), p. 39.

    Article  Google Scholar 

  22. G. Linden, Mater. Sci. & Eng., 40 (1979), p. 5.

    Article  Google Scholar 

  23. S. Ankem and H. Margolin, Metall. Trans., 11A (1980), p. 963.

    Google Scholar 

  24. S. Ankem and H. Margolin, Metall. Trans., 13A (1982), p. 603.

    Google Scholar 

  25. Y. Tomota, K. Kuroki, T. Mori and J. Tamura, Mater. Sci. & Eng., 24 (1976), p. 85.

    Article  Google Scholar 

  26. N.C. Goel, S. Sangal and K. Tangri, Metall. Trans., 16A (1985), p. 2013.

    Google Scholar 

  27. S. Sangal and K. Tangri, Metall. Trans., 16A (1985) Ibid, p. 2023.

  28. K.S. Chan, C.C. Woscik and D.A. Koss, Metall. Trans., 12A (1981), p. 1899.

    Google Scholar 

  29. H. Fischmeister, J.O. Hjälmered, B. Karlsson, G. Linden and B. Sundström, Proc. Third Int. Conf. Strength of Metals & Alloys, Inst, of Metals & Iron and Steel Inst., Cambridge and London, 1973, Vol. 1, p. 621.

    Google Scholar 

  30. B. Karlsson and B.O. Sundström, Mater. Sci. Eng., 16 (1974), p. 161.

    Article  Google Scholar 

  31. B.O. Jaensson and B.O. Sundström, Mater. Sci. Eng., 9 (1972), p. 217.

    Article  Google Scholar 

  32. B.O. Sundström, Mater. Sci. Eng., 12 (1973), p. 265.

    Article  Google Scholar 

  33. O.C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill, New York, 1971.

    MATH  Google Scholar 

  34. C.W. McCormick (Ed.), NASTRAN Users Manual Level 15.5, May 1973, Document NASA ST [(222)01], Published by National Aeronautics & Space Administration, Washington, D.C.

    Google Scholar 

  35. K. Hashimoto and H. Margolin, Acta Met. 1983, Vol. 31, p. 773.

    Article  Google Scholar 

  36. H. Hashimoto and H. Margolin, Acta. Met. 1983, Vol. 31, p. 787.

    Article  Google Scholar 

  37. N. Thompson, Fracture, B.L. Averbach, D.K. Felbeck, G.T. Hahn and D.A. Thomas, Eds., John Wiley & Sons, New York, 1959, p. 354.

  38. R.C. Boettner, A.J. McEvily and Y.C. Liu, Phil Mag., 1964, Vol. 10, p. 95.

    Article  Google Scholar 

  39. Z.R. Wang and H. Margolin, Met. Trans., 1985, Vol. 16A, p. 873.

    Google Scholar 

Download references

Authors

Additional information

S. Ankem received his Ph.D. from the Polytechnic University of Brooklyn, New York in 1980. He is currently an Associate Professor in the Department of Chemical & Nuclear Engineering at the University of Maryland. Professor Ankem is also a Member of TMS.

H. Margolin is currently a Professor in the Department of Metallurgy and Materials Science at the Polytechnic University in Brooklyn, New York. Professor Margolin is also a Member of TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ankem, S., Margolin, H. Modeling Deformation in Two-Phase Alloys. JOM 38, 25–29 (1986). https://doi.org/10.1007/BF03257865

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03257865

Keywords

Navigation