Skip to main content

Advertisement

Log in

Electrochemical and Mechanical Characterization of TiO2 Nanotubes Obtained by Anodic Oxidation at High Voltage

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The array of the TiO2 nanotubular films, also called one-dimensional nanostructures is carried out by electrochemical anodization tests, for which, titanium sheets were used with a high purity (99.7% and 0.25 mm thickness) in a solution of deionized water and glycerol (50:50 vol.%) + 0.27M NH4F applying a voltage of 20V. Electrochemical tests were performed at an anodization time of 2:30 hours and 3:30 hours. For the tests mirror polished foils and unpolished foils with flat surfaces to achieve better uniform arrays during the anodic growth of nanotubes were used. After anodizing, samples were observed in the scanning electron microscope (SEM) to determine the geometry and morphology of the films. Also, potentiodynamic polarization curves were performed for samples crystallized at 600 °C and 450 °C (polished and unpolished) to determine the electrochemical stability of the films, which were presented at two aqueous solutions: 1M of Na2SO4 (pH= 6.7) and 1M Na2SO4 + H2SO4 (pH= 3.2). Mechanical characterization was also performed by nanoindentation technique through the application of loading/unloaings of: (1, 2.5, 5, 10 mN). Chemical characterization was performed using XRD analysis, with the aim to determine the crystalline phases formed in the films crystallized at 450 °C and 600 °C. The electrochemical characterization showed that the TiO2 nanotubular film obtained by mirror polished and crystallized at 600 °C showed better electrochemical stability. Nanoindentation tests showed deformation curves, and the parameters such as hardness, Vickers hardness, elastic modulus and the maximum penetration depth were determined as mechanical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macak J.M., Hildebrand H., Marten-Jahns U., Schmuki P., Journal of Electroanalytical Chemistry 621, 254–266 (2008).

    Article  CAS  Google Scholar 

  2. Regonini D., Satka A., Jaroenworaluck A., Allsopp D.W.E., Bowen C.R., Stevens R., Electrochimica Acta 74, 244– 253, (2012).

    Article  CAS  Google Scholar 

  3. Yang Yang, Wang Xiaohui, Materials Science and Engineering B 149, 58–62, (2008).

    Article  CAS  Google Scholar 

  4. Xiao Xiufeng, Ouyang Keguan, Liu Rongfang, Liang Jianhe, Applied Surface Science 255, 3659–3663 (2009).

    Article  CAS  Google Scholar 

  5. Albu Sergiu P., Schmuki Patrik, Electrochimica Acta 91, 90– 95 (2013).

    Article  CAS  Google Scholar 

  6. Palmas S., Da Pozzo A., Delogu F., Mascia M., Vacca A., Guisbiers G., Journal of Power Sources 204, 265– 272 (2012).

    Article  CAS  Google Scholar 

  7. Valota A., LeClere D.J., Skeldon P., Curioni M., Hashimoto T., Berger S., Kunze J., Schmuki P., Thompson G.E., Electrochimica Acta 54, 4321–4327 (2009.)

    Article  CAS  Google Scholar 

  8. Kim Doohun, Schmidt-Stein Felix, Hahn Robert, Schmuki Patrik, Electrochemistry Communications 10, 1082–1086 (2008).

    Article  CAS  Google Scholar 

  9. Macak Jan M., Tsuchiya Hiroaki, Taveira Luciano, Aldabergerova Saule, and Schmuki Patrik, Angew. Chem. Int. Ed., 44, 7463 –7465 (2005).

    Article  CAS  Google Scholar 

  10. Macak Jan M., Schmuki Patrik, Electrochimica Acta 52, 1258–1264 (2006).

    Article  CAS  Google Scholar 

  11. Alivov Yahya, Fan Z. Y., and Johnstone D., Journal of applied physics106, 343 (2009).

  12. Mutuma Bridget K., Shao Godlisten N., Kim Won Duck, Kim Hee Taik, Journal of Colloid and Interface Science 442, 1–7 (2015).

    Article  CAS  Google Scholar 

  13. Cabaleiro D., Nimo J., Pastoriza-Gallego M.J., Piñeiro M.M., Legido J.L., Lugo L., Chem J. Thermodynamics 83, 67–76 (2015).

    Article  CAS  Google Scholar 

  14. Yu Jiaguo, Wang Bo, Applied Catalysis B: Environmental 94, 295–302 (2010).

    Article  CAS  Google Scholar 

  15. Lai Yuekun, Zhuang Huifang, Sun Lan, Chen Zhong, Lin Changjian, Electrochimica Acta 54, 6536–6542 (2009).

    Article  CAS  Google Scholar 

  16. Berger S., Ghicov A., Nah Y.-C., and Schmuki P., Langmuir 25 (9), 4841–4844 (2009).

    Article  CAS  Google Scholar 

  17. Mohammadi Zahrani E., Alfantazi A.M., Corrosion Science 65, 340–359 (2012).

    Article  CAS  Google Scholar 

  18. Games Lucas Aloia, Sanchez Andrea Gomez, Jimenez-Pique Emilio, Schreiner Wido H., Ceré Silvia M., Ballarre Josefina, Surface & Coatings Technology 206, 4791–4798 (2012).

    Article  CAS  Google Scholar 

  19. Gregorio-Vázquez Lucia, Cuevas-Arteaga Cecilia, Hernández Grecia, del Ángel-Meraz Ebelia, Avances en Ciencia e Ingeniería 4-1, 85–95 (2013).

    Google Scholar 

  20. Vera-Jiménez A. M., Melgoza-Alemán R.M., Valladares-Cisneros M.G., Cuevas-Arteaga C., Journal of Nanomaterials 12, 1–12 (2015) http://dx.doi.org/10.1155/2015/624073.

    Article  Google Scholar 

  21. Reynaud Morales A.G., Cuevas Arteaga C., Superficies y Vacío 26(2), 64–70 (2013).

    Google Scholar 

  22. Crawford G.A., Chawla N., Das K., Bose S., Bandyopadhyay A., Acta Biomaterialia 3, 359–367 (2007).

    Article  CAS  Google Scholar 

  23. Tang C. Y., Tsui C. P., Janackovic DJ., Uskokovic P. S., Journal of Optoelectronics and Advanced Materials 8/3, 1194–1199 (2006).

    Google Scholar 

  24. Lucca D.A., Herrmann K., Klopfstein M.J. Nanoindentation: Manufacturing Technology 59, 803–819 (2010).

    Google Scholar 

  25. Soares Paulo, Mikowski Alexandre, Lepienski Carlos M., Santos Emanuel Jr., Soares Gloria A., Swinka Filho Vitoldo, Kuromoto Neide K. Hardness and Elastic Modulus of TiO2 Anodic Films Measured by Instrumented Indentation. Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jbm.b.30900

  26. Li Xiaodong, Bhushan Bharat, Materials Characterization 48, 11–36 (2002) ‘‘Standard Practice for Instrumented Indentation Testing,’’ E2546–07, ASTM International, West Conshohocken, PA (2007) ‘‘Metallic Materials–Instrumented Indentation Test for Hardness and Materials Parameters,’’ ISO 14577, International Organization for Standardization, Geneva, Switzerland (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sintillo, S.M., Arteaga, C.C., Melgoza, R.M. et al. Electrochemical and Mechanical Characterization of TiO2 Nanotubes Obtained by Anodic Oxidation at High Voltage. MRS Online Proceedings Library 1815, 90 (2016). https://doi.org/10.1557/opl.2016.90

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2016.90

Navigation