Skip to main content

Advertisement

Log in

Microstructure and Crystallographic Texture Development of Microalloyed Twinning Induced Plasticity (TWIP) Steels Under Uniaxial Hot-Tensile Conditions

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nowadays, there are limited referenced data on the hot deformation of twinning induced plasticity (TWIP) steels, particularly on the crystallographic preferred orientation (crystallographic texture). It is well know that texture is one of the most important factors affecting sheet metal forming performance. The aim of this research work is to determine the influence of microalloying elements on the microstructure and texture of high-Mn austenitic TWIP steels deformed under uniaxial hot-tensile conditions. For this purpose, one non-microalloyed and other single microalloyed with Ti, V and Mo TWIP steels were melted in an induction furnace and cast into metal and sand molds. Samples with average austenitic grain size between 400 and 2000 μm were deformed in the temperature range between 800 and 900 °C at a constant true strain rate of 10-3 s-1. The evolution of the microstructure and texture near to the fracture tip were characterized using electron back-scattering diffraction (EBSD) technique. The results show that the TWIP steels microalloyed with V and Mo and the non-microalloyed one, solidified in metal mold, exhibit dynamically recrystallized grains oriented in the [012] preferential direction, which was corroborated by local misorientation measurements, indicating low dislocation density. On the other hand, most TWIP steels solidified in sand molds do not show dynamically recrystallized grains, having the largest austenitic grains oriented in the [001]/[101] preferred directions. In general, weak textural Cube {001}<100> combined with <111> fiber, namely γ-fiber, spread from E {111}<110> to Y {111}<112> as major texture components were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Xiong, R.Y. Fu and Y. Su, J. Iron and Steel Res. Int. 16, 81 (2009).

    Article  Google Scholar 

  2. O. Grassel, L. Krugreer and G. Frommeyer, Int. J. Plast. 16, 1391 (2000).

    Article  CAS  Google Scholar 

  3. A. Saeed-Akbani, J. Imlau, U. Prahl and W. Bleck, Metall. Trans. A 40, 3076 (2009).

    Article  Google Scholar 

  4. Y. K. Lee and C. S. Choi, Metall. Mater. Trans. A 31, 355 (2000).

    Article  Google Scholar 

  5. D. Barbier, V. Favier and B. Bolle, Mater. Sci. Eng. A 540, 212 (2012).

    Article  CAS  Google Scholar 

  6. Y. Su, L. Li and R. Y. Fu, J. Iron and Steel Res. Int. 20, 46 (2013).

    Article  CAS  Google Scholar 

  7. A.E. Salas-Reyes, I. Mejía, A. Bedolla-Jacuinde, A. Boulaajaj, J. Calvo and J. M. Cabrera, Mater. Sci. Eng. A 611, 77 (2014).

    Article  CAS  Google Scholar 

  8. I. Mejía, A.E. Salas-Reyes, A. Bedolla-Jacuinde, J. Calvo and J.M. Cabrera, Mater. Sci. Eng. A 616, 229 (2014).

    Article  Google Scholar 

  9. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, Mater. Sci. Eng. A 538, 236 (2012).

    Article  CAS  Google Scholar 

  10. J.J. Jones, “Transformation textures associated with steel processing”, Chapter 1, Microstructure and Texture in Steels and Other Materials, ed. Springer, (2009), pp. 3–17.

    Chapter  Google Scholar 

  11. F. Reyes-Calderon, I. Mejía, J.M. Cabrera, Mater. Sci. Eng. A 562, 46 (2013).

    Article  CAS  Google Scholar 

  12. H. L. Andrade, M. G. Akben and J. J. Jonas, Metall. Mater. Trans. A 14, 1967 (1983).

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología —México) for the support during the project CB-2012-01-0177572. The present research project was also supported by the Coordinación de la Investigación Científica —UMSNH (México) (CIC-1.8). A.E. Salas-Reyes's studies are sponsored by the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología —México), N.B. [242326].

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas-Reyes, A., Mejía, I. & Cabrera, J. Microstructure and Crystallographic Texture Development of Microalloyed Twinning Induced Plasticity (TWIP) Steels Under Uniaxial Hot-Tensile Conditions. MRS Online Proceedings Library 1765, 103–108 (2015). https://doi.org/10.1557/opl.2015.814

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.814

Navigation