Skip to main content
Log in

Numerical Analysis Applied to Nonlinear Problems

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The present paper shows the applicability of the Dual Boundary Element Method to analyze plastic, visco-plastic and creep behavior in fracture mechanics problems. Several models with a crack, including a square plate, a holed plate and a notched plate are analyzed. Special attention is taken when the discretization of the domain is done. In Fact, for the plasticity and viscoplasticity cases only the region susceptible to yielding was discretized, whereas, the creep case required the discretization of the whole domain. The proposed formulation is presented as an alternative technique to study this kind of non-linear problems. Results from the present formulation are compared to those of the well-established Finite Element Technique, and they are in good agreement. Important fracture mechanic parameters such as KI, KII, J- and C- integrals are also included. In general, the results, for the plastic, visco-plastic and creep cases, show that the highest stress concentrations are in the vicinity of the crack tip and they decrease as the distance from the crack tip is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Aliabadi, in The Boundary Element Method 2, Applications in Solids and Structures, (John Wiley & Sons, UK, 2002).

    Google Scholar 

  2. M.H. Aliabadi, Int. J. Fract. 86, 91–125 (1997).

    Article  Google Scholar 

  3. M.H. Aliabadi, Appl. Mech. Review 50, 83–96 (1997).

    Article  Google Scholar 

  4. M.H. Aliabadi and A. Portela, in Boundary Element Technology VII, (Computational Mechanics Publications, Southampton, 1992) pp. 607–616.

    Book  Google Scholar 

  5. J.L. Bassani and F.A. McClintock, Int. J. Solids Struct. 17, 479–492 (1981).

    Article  Google Scholar 

  6. A.A. Becker and T.H. Hyde, NAFEMS Report R0027, 1993.

  7. Y.J. Chao, X.K. Zhu and L. Zhang, Int. J. Solids Struct. 38, 3853–3875 (2001).

    Article  Google Scholar 

  8. A.P. Cisilino and M.H. Aliabadi, Int. J. Pres. Ves. Pip. 70, 135–144 (1997).

    Article  Google Scholar 

  9. A.P. Cisilino, M.H. Aliabadi and J.L. Otegui, Int. J. Numer. Meth. Eng. 42, 237–256 (1998).

    Article  Google Scholar 

  10. A.P. Cisilino and M.H. Aliabadi, Eng. Fract. Mech. 63, 713–733 (1999).

    Article  Google Scholar 

  11. R. Ehlers and H. Riedel, in A Finite Element Analysis of Creep Deformation in a Specimen Containing a Microscopic Crack, edited by D. Francois, (Advances in Fracture Research, Proc. Fifth. Int. Conf. on Fracture 2, Pergamon, New York, 1981) pp. 691–698.

    Google Scholar 

  12. J.W. Hutchinson, J. Mech. Phys. Solids 16, 13–31 (1968).

    Article  Google Scholar 

  13. V. Leitao, M.H. Aliabadi, D.P. Rooke, Int. J. Numer. Meth. Eng. 38, 315–333 (1995).

    Article  Google Scholar 

  14. F.Z. Li, A. Needlemen and C.F. Shih, Int. J. Fract. 36, 163–186 (1988).

    Google Scholar 

  15. A. Mendelson, NASA Report No. TN D-7418, 1973.

  16. Y. Mi and M.H. Aliabadi, Eng. Anal. Bound. Elem. 10, 161–171 (1992).

    Article  Google Scholar 

  17. J.T. Oden, in Finite Elements of Nonlinear Continua, (McGraw-Hill, New York, 1972).

    Google Scholar 

  18. K. Ohji, K. Ogura and S. Kubo, JSME 790, 18–20 (1979).

    Google Scholar 

  19. A. Portela, M.H. Aliabadi and D.P. Rooke, Int. J. Numer. Meth. Eng. 33, 1269–1287 (1992).

    Article  Google Scholar 

  20. C.P. Providakis and S.G. Kourtakis, Comput. Mech. 29, 298–306 (2002).

    Article  Google Scholar 

  21. P. Riccardella, PhD Thesis, Carnegie Mellon University, 1973.

  22. J.R. Rice and G.F. Rosengren, J. Mech. Phys. Solids 16, 1–12 (1968).

    Article  Google Scholar 

  23. H. Riedel and J.R. Rice, in Fracture Mechanics: 12th Conference, (ASTM STP 700, Philadelphia, PA, 1980) pp. 112–130.

    Article  Google Scholar 

  24. J.L. Swedlow and T.A. Cruse, Int. J. Solids Struct. 7, 1673–1681 (1971).

    Article  Google Scholar 

  25. J.C.F. Telles and C.A. Brebbia, Int. J. Mech. Sci. 24, 605–618 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León, E.P., Rodríguez-Castellanos, A. & Aliabadi, M. Numerical Analysis Applied to Nonlinear Problems. MRS Online Proceedings Library 1765, 51–57 (2015). https://doi.org/10.1557/opl.2015.806

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.806

Navigation