Skip to main content
Log in

Plasma Deposition of Biomolecules for Enhanced Biomedical Applications

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Biomolecules have been traditionally immobilised onto surfaces using wet chemical techniques for various medical applications. Recent decades have seen plasma methods being used to prepare these surfaces through various forms of surface modification, but the direct exposure of biomolecules to plasma has been avoided due to fears that the molecules would be denatured by the energetic plasma species. Recent results are now demonstrating that direct plasma deposition of biomolecule coatings can be achieved. This creates the possibility to directly modify the surface of implants without any form of surface pre-treatment and this opens up the possibility to alter the healing processes. Materials such as collagen, chitosan, catalase and heparin can be effectively deposited onto surfaces with minimal impact on biological performance and without any chemical binders, linkers or impurities. The performance of these materials has been characterised using both in vitro and in vivo methodologies. In a further step, the results of a preclinical trial are presented which reveal that direct deposition of biomolecules onto open wounds can also be achieved and the impact of this on wound healing is measured in an immunocompromised animal model. A non-thermal plasma device was used to deliver collagen on to chronic wounds and the treatment was shown to promote wound closure in a rabbit wound healing model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. O. Pierson, Handbook of Chemical Vapour Deposition 2nd Edition, (Noyes Publications, 1999) pp134–144.

    Google Scholar 

  2. J. R. Hollahan, Makromolekulare Chemie, 154, 303–308 (1972)

    Article  CAS  Google Scholar 

  3. H. Yasuda, C.E. Lamaze, Journal of Applied Polymer Science, 17(5), 1519–31 (1973).

    Article  CAS  Google Scholar 

  4. H. Yasuda, T. Hsu, Journal of Polymer Science, Polymer Chemistry Edition, 15(1), 81–97 (1977)

    Article  CAS  Google Scholar 

  5. A. I. Shustov, B.V. Tkachuk, USSR. Khimiya Vysokikh Energii, 8(3), 242–5 (1974)

    CAS  Google Scholar 

  6. A.M. Wrobel, A. Walkiewicz-Pietzykowska, Y. Hatanaka, S. Wickramayaka, Y. Nakanishi, Chem. Mater., 13, 1884 (2001)

    Article  CAS  Google Scholar 

  7. L.M. Han, R. B. Timmons, D. Bogdal, J. Pielichowski, Chem. Mater., 10 (5), 1422–1429 (1998)

    Article  CAS  Google Scholar 

  8. L.M. Han, K. Rajeshwar, K.R.B. Timmons, Langmuir, 13, 5941 (1997)

    Article  CAS  Google Scholar 

  9. M.E. Ryan, A.M. Hynes, J.P.S. Badyal, Chem. Mater., 8, 37–42 (1996)

    Article  CAS  Google Scholar 

  10. R. Forch, Z. Zhang, W. Knoll, Plasma Process. Polym., 2, 351–372 (2005)

    Article  CAS  Google Scholar 

  11. L.J. Ward, W.C.E. Schofield, J.P.S. Badyal, A.J. Goodwin, P.J. Merlin, Chem. Mater., 15, 1466 (2003)

    Article  CAS  Google Scholar 

  12. L. J. Ward, W.C.E. Schofield, J.P.S. Badyal, A.J. Goodwin, P.J. Merlin, P. J.; Langmuir, 19(6); 2110–2114 (2003)

    Article  CAS  Google Scholar 

  13. L. O’Neill, C. O’Sullivan, Chem Vap. Depoition, 15, 1–6 (2009)

    Google Scholar 

  14. P. Heyse, R. Dams, S. Paulussen, K. Houthoofd, K. Janssen, P.A. Jacobs, B. F. Sels, Plasma Process. Polym., 2, 145 (2007)

    Article  CAS  Google Scholar 

  15. M. Tatoulian, F. Arefi-Khonsari, Plasma Process. Polym., 4, 360 (2007)

    Article  CAS  Google Scholar 

  16. L. O’Neill, P.A.F. Herbert, C. E. Stallard, D. P. Dowling, Plasma Process. Polym., 7, 43–50 (2010)

    Article  CAS  Google Scholar 

  17. P. Heyse, A. Van Hoeck, M. B. J. Roeffaers, J.-P. Raffin, A. Steinbuchel, T. Stoveken, J. Lammertyn, P. Verboven, P.A. Jacobs, J. Hofkens, S. Paulussen, B.F. Sels, Plasma Process Polym, 8(10), 965–974 (2011)

    Article  CAS  Google Scholar 

  18. M.G. Ortore, R. Sinibaldi, P. Heyse, S. Paulussen, S. Bernstorff, B. Sels, P. Mariani, F. Rustichelli, F. Spinozzi, Appl. Surf. Sci., 254, 5557–5563 (2008)

    Article  CAS  Google Scholar 

  19. P. Heyse, M. B. J. Roeffaers, S. Paulussen, J. Hofkens, P. A. Jacobs, B. F. Sels, Plasma Process. Polym., 5, 186 (2008)

    Article  CAS  Google Scholar 

  20. D. K. Owens, R. C. Wendt, Journal of Applied Polymer Science, 13, 1741 (1969)

    Article  CAS  Google Scholar 

  21. A. Breen, G. Mc Redmond, P. Dockery, T. O'Brien, A. Pandit, J Invest Surg., 21(5), 261–9 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. A. Pandit, Dr. D. Zeugolis and Dr. M. Kulkarni of the National Centre for Functional Biomaterials, UCG, Galway, Ireland for assistance in characterising the biological response of these surfaces. Dr. Zeugolis performed the cell culture studies. The in vivo rabbit studies were conducted under appropriate ethical and regulatory standards by M. Kulkarni and all studies were overseen by Prof A. Pandit.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Neill, L., Twomey, B., Dobbyn, P. et al. Plasma Deposition of Biomolecules for Enhanced Biomedical Applications. MRS Online Proceedings Library 1723, 25–33 (2014). https://doi.org/10.1557/opl.2015.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.22

Navigation