Skip to main content

Advertisement

Log in

Martensitic Transformation and Mechanical Properties of Fe-added Au-Cu-Al Shape Memory Alloy with Various Heat Treatment Conditions

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In order to improve shape memory properties of Au-Cu-Al based shape memory alloys, the possibility to utilize thermo-mechanical treatment was investigated in this study, and effects of heat-treatment temperature on microstructure, martensitic transformation and mechanical properties of cold-rolled Au-30Cu-18Al-2Fe (AuCuAlFe) alloy were clarified by X-ray diffraction analysis (XRD, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and tensile tests at room temperature (RT). Here, Fe addition to AuCuAl improves ductility. Cold rolling with the thickness reduction of 30% was successfully carried out in AuCuAlFe at RT. An exothermic heat was observed in DSC at temperature from 402K, suggesting that recovery started at 402K. Besides, the transformation temperature hysteresis increased by the cold-rolling. The alloy was completely recrystallized after the heat treatment at 573K for 3.6ks. Tensile tests revealed that the yield stress was raised by cold rolling and largely by the subsequent heat treatment at 433K, which corresponded to the recovery start temperature by DSC. The yield stress decreased with increasing heat treatment temperature over 453K, probably due to recrystallization. AuCuAlFe cold-rolled and subsequent heat-treated at 573K exhibited the lowest yield stress as well as stress-plateau region, indicating that the thermomechanical treatment is effective to improve shape memory properties of Au-Cu-Al based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Wolff and M. B. Cortie, Gold Bull., 27, 44–54 (1994).

    Article  CAS  Google Scholar 

  2. F.C. Lever, M.B. Cortie, L.A. Cornish, Metall. Trans. A, 31A, 1917–1923 (2000).

    Google Scholar 

  3. Y. Gu, M. Jin and X. Jin, Intermetallics, 17, 704–707 (2000).

    Article  Google Scholar 

  4. F. C. Levey and M. B. Cortie, Mat. Sci. Eng. A 303, 1–10 (2001).

    Article  Google Scholar 

  5. M. B. Cortie and F. C. Levey, Intermetallics, 10, 23–31 (2002).

    Article  CAS  Google Scholar 

  6. M. B. Cortie, C. S. Kealley, V. Bhatia, G. J. Thorogood, M. M. Elcombe and M. Avdeev, J. Alloy Comp., 509, 3502–3508 (2011).

    Article  CAS  Google Scholar 

  7. X. Jin and M. Jin, J. Alloy Comp., 577S, S155–S158 (2013).

    Article  Google Scholar 

  8. F. C. Levey, M.B. Cortie, L.A. Cornish, J. Alloys Comp., 354, 171–180 (2003).

    Article  CAS  Google Scholar 

  9. F. C. Levey, M.B. Cortie, L.A. Cornish, Metall. Mater. Trans. A, 33A, 987–993 (2002).

    Article  CAS  Google Scholar 

  10. V. K. Bhatia, C. S. Kealley, K. S. Wallwork and M. B. Cortie, J. Alloy. Comp., 488, 100–107 (2009).

    Article  CAS  Google Scholar 

  11. F. C. Levey, M. B. Cortie and L. A. Cornish, Scripta Mater., 47, 95–100 (2002)

    Article  CAS  Google Scholar 

  12. V. K. Bhatia, F. C. Levey, C. S. Kealley, A. Dowd and M. B. Cortie, Gold Bull., 42, 201–208 (2009).

    Article  CAS  Google Scholar 

  13. J. Mingjiang, L. Jiayi, G. Younghong and J. Xuejun, J. Alloy Comp., 577S, S459–462 (2013).

    Article  Google Scholar 

  14. S. Urbano, A. Manca, S. Besseghini and G. Airoldi, Scripta Mater., 52, 317–321 (2005).

    Article  CAS  Google Scholar 

  15. V. K. Bhatia, C. S. Kealley, A. Dowd and M. B. Cortie, 33rd Annual Condensed Matter and Materials Meeting, Wagga Wagga, NSW, Australia, 1-4 (2009).

  16. V. K. Bhatia, C. S. Kealley, A. Dowd and M. B. Cortie, Acta Mater., 59, 2193–2200 (2011).

    Article  CAS  Google Scholar 

  17. S. Miyazaki, Y. Ohmi, K. Otsuka and Y. Suzuki, J. Phys., 43, C4–255–C4–260 (1982).

    Google Scholar 

  18. T. Subri, S. Nenno, Y. Nishimoto and M. Zeniya, J. Iron Steel Inst. Jpn. (Tasu-to-Hagane), 72, 571–578 (1986).

    Article  Google Scholar 

  19. A. Umise, T. Morita, K. Goto, M. Tahara, T. Inamura and H. Hosoda, Proc. 21th Materials and Processing Conf. (M&P2013), The Jpn. Soc. Mech. Eng. (JSME), No.13-31, 210 (2013) (CD-ROM, in Japanese).

    Google Scholar 

  20. H. Hosoda, S. Hanada, K. Inoue, T. Fukui, Y. Mishima and T. Suzuki, Intermetallics, 6, 291–301 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Funding Program for Next Generation World-Leading Researchers (LR015), Grant-in-Aid of Scientific Research (Kiban S 26220907, Wakate A 24686077 and Wakate B 26870194) from JSPS, and the Advanced Low Carbon Technology Research and Development Program (JY240121) of Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umise, A., Tahara, M., Goto, K. et al. Martensitic Transformation and Mechanical Properties of Fe-added Au-Cu-Al Shape Memory Alloy with Various Heat Treatment Conditions. MRS Online Proceedings Library 1760, 1–6 (2014). https://doi.org/10.1557/opl.2014.949

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.949

Navigation