Skip to main content
Log in

Revealing the electronic band structure of quasi-free trilayer graphene on SiC(0001)

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Recently, much attention has been devoted to trilayer graphene because it displays stacking and electric field dependent electronic properties well-suited for electronic and photonic applications [1-8]. Several theoretical studies have predicted the electronic dispersion of Bernal (ABA) and rhombohedral (ABC) stacked trilayers. However, a direct experimental visualization of a well-resolved band structure has not yet been reported. In this work, we obtain large area highly homogenous quasi-free trilayer graphene (TLG) on 6H-SiC(0001) and measure its electronic bands via angle resolved photoemission spectroscopy (ARPES). We demonstrate by low energy electron microscopy measurements that that trilayer domains on SiC extend over areas of tens of square micrometers. By fitting tight-binding bands to the experimental data we extract the interatomic hopping parameters for Bernal and rhombohedral stacked trilayers. For ABC stacks and in the presence of an electrostatic asymmetry, we detect the existence of a band-gap of about 120 meV. Notably our results suggest that on SiC substrates the occurrence of ABC-stacked TLG is significantly higher than in natural bulk graphite. Hence, growing TLG on SiC might be the answer to the challenge of controllably synthesizing ABC-stacked trilayer–an ideal material for the fabrication of a new class of gap-tunable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Min, and A. H. MacDonald, Prog. Theor. Phys. Suppl. 176, 227 (2008).

    Article  CAS  Google Scholar 

  2. F. Zhang, B. Sahu, H. Min and A. H. MacDonald, Phys. Rev. B 82, 035409 (2010).

    Article  Google Scholar 

  3. M. Koshino, Phys. Rev. B 81, 125304 (2010).

    Article  Google Scholar 

  4. M. F. Craciun {etet al.}, Nature Nanotechn. 4, 383–388 (2009).

    Article  CAS  Google Scholar 

  5. C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, Nature Phys. 7, 944–947 (2011).

    Article  CAS  Google Scholar 

  6. W. Bao {etet al.}, Nature Phys. 7, 948–952 (2011).

    Article  CAS  Google Scholar 

  7. L. Zhang, Y. Zhang, J. Camacho, M. Khodas, and I. Zaliznyak, Nature Phys. 7, 953–957 (2011).

    Article  CAS  Google Scholar 

  8. A. Yacoby, Nature Phys. 7, 925–926 (2011).

    Article  CAS  Google Scholar 

  9. F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006).

    Article  Google Scholar 

  10. M. Aoki, and H. Amawashi, Solid State Communications 142, 123–127 (2007).

    Article  CAS  Google Scholar 

  11. A. Grüneis {etet al.}, Phys. Rev. B 78, 205425 (2008).

    Article  Google Scholar 

  12. M. Koshino, and E. McCann, Phys. Rev. B 80, 165409 (2009).

    Article  Google Scholar 

  13. A. A. Avetisyan, B. Partoens, and F. M. Peeters, Phys. Rev. B 81, 115432 (2010).

    Article  Google Scholar 

  14. H. Lipson, and A. R. Stokes, Proc. R. Soc. A101, 181 (1942).

    Google Scholar 

  15. C. H. Lui, Z. Li, Z. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, Nano Lett. 11, 164–169 (2011).

    Article  CAS  Google Scholar 

  16. T. Ohta {etet al.}, Phys. Rev. Lett. 98, 206802 (2007).

    Article  Google Scholar 

  17. C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, U. Starke, Phys. Rev. Lett. 103, 246804 (2009).

    Article  CAS  Google Scholar 

  18. C. Coletti, S. Forti, A. Principi, K.V. Emtsev, A.A. Zakharov, K.M. Daniels, B.K. Daas, M.V.S. Chandrashekhar, T. Ouisse, D. Chaussende, A. H. MacDonald, M. Polini, and U. Starke, Phys. Rev. B 88, 155439 (2013).

    Article  Google Scholar 

  19. B. K. Daas, K. M. Daniels, T. S. Sudarshan, and M. V. S. Chandrashekhar, J. Appl. Phys. 110, 113114, (2011).

    Article  Google Scholar 

  20. K. V. Emtsev, F. Speck, T. Seyller, L. Ley, and J. D. Riley, Phys. Rev. B 77, 155303 (2008).

    Article  Google Scholar 

  21. E. McCann, and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).

    Article  Google Scholar 

  22. U. Starke, S. Forti, K.V. Emtsev, and C. Coletti, MRS Bulletin 37 (12), pp. 1177–1186 (2012).

    Article  CAS  Google Scholar 

  23. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 (2006).

    Article  CAS  Google Scholar 

  24. C. Coletti, C. Riedl, D. S. Lee, B. Krauss, K. von Klitzing, J. Smet, and U. Starke, Phys. Rev. B 81, 235401 (2010).

    Article  Google Scholar 

  25. S. Forti, K. V. Emtsev, C. Coletti, A. A. Zakharov, and U. Starke, Phys. Rev. B 84, 125449 (2011).

    Article  Google Scholar 

  26. T. Seyller, J. Phys.: Condens. Matter 16, S1755 (2004).

    Google Scholar 

  27. C. Coletti, C.L. Frewin, A.M. Hoff, and S.E. Saddow, Electrochemical and Solid-State Letters 11 (10), H285–H287 (2008).

    Article  CAS  Google Scholar 

  28. C. Coletti, S. Forti, K. V. Emtsev, and U. Starke, GraphITA 2011: Selected papers from the Workshop on Fundamentals and Applications of Graphene, Carbon Nanostructures, pp. 39–49, Springer Berlin Heidelberg (2012).

    Google Scholar 

  29. S. Goler {etet al.}, Carbon 51, 249–254 (2013).

    Article  CAS  Google Scholar 

  30. C. Riedl, C. Coletti, and U. Starke, J. Phys. D: Appl. Phys. 43 374009 (2010).

    Article  Google Scholar 

  31. J. Ristein, S. Mammadov, and T. Seyller, Phys. Rev. Lett. 108, 246104 (2012).

    Article  CAS  Google Scholar 

  32. M. Mucha-Kruczyński, O. Tsyplyatyev, A. Grishin, E. McCann, V. I. Fal’ko, A. Bostwick, and E. Rotenberg, Phys. Rev. B 77, 195403 (2008).

    Article  Google Scholar 

  33. W. Norimatsu, and M. Kusunoki, Phys. Rev. B 81, 161410 (2010).

    Article  Google Scholar 

  34. L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro Neto, and M. A. Pimenta, Phys. Rev. B 76, 201401(R) (2007).

    Article  Google Scholar 

  35. C. Coletti, K. V. Emtsev, A. A. Zakharov, T. Ouisse, D. Chaussende, and U. Starke, Appl. Phys. Lett. 99, 081904 (2011).

    Article  Google Scholar 

Download references

acknowledgments

C.C. acknowledges the Alexander von Humboldt Foundation for financial support. This work was supported by the Deutsche Forschungsgemeinschaft in the framework of the Priority Program 1459 Graphene (Sta315/8-1). The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement n°604391 Graphene Flagship. Support by the staff at SLS (Villigen, Switzerland) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Coletti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coletti, C., Forti, S., Principi, A. et al. Revealing the electronic band structure of quasi-free trilayer graphene on SiC(0001). MRS Online Proceedings Library 1693, 159–167 (2014). https://doi.org/10.1557/opl.2014.610

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.610

Navigation