Skip to main content
Log in

The evaluation of van der Waals interaction in the oriented-attachment growth of nanotubes

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Taking the advantage of nanomaterials to protect the environment and avoiding the side effect need a fundamental understanding of the growth mechanism of the nanomaterials. Here, the van der Waals interaction between a nanoparticle and a nanotube in the oriented-attachment growth of nanotubes is quantitatively evaluated for the first time. In particular, the correlation between van der Waals interaction and the growth parameters is investigated in depth. Our work opens up the opportunity of studying the important interparticle interactions in the oriented attachment growth of nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Khin, A. S. Nair, V. J. Babu, R. Murugan and S. Ramakrishna, Energy & Environmental Science, 2012, 5, 8075–8109.

    Article  CAS  Google Scholar 

  2. C. Chen, J. Hu, D. Xu, X. Tan, Y. Meng and X. Wang, Journal of Colloid and Interface Science, 2008, 323, 33–41.

    Article  CAS  Google Scholar 

  3. X. Tian, S. Zhou, Z. Zhang, X. He, M. Yu and D. Lin, Environmental Science & Technology, 2010, 44, 8144–8149.

    Article  CAS  Google Scholar 

  4. S. Chen, C. Liu, M. Yang, D. Lu, L. Zhu and Z. Wang, Journal of Hazardous Materials, 2009, 170, 247–251.

    Article  CAS  Google Scholar 

  5. M. S. Mauter and M. Elimelech, Environmental Science & Technology, 2008, 42, 5843–5859.

    Article  CAS  Google Scholar 

  6. X. Wang, C. Chen, W. Hu, A. Ding, D. Xu and X. Zhou, Environmental Science & Technology, 2005, 39, 2856–2860.

    Article  CAS  Google Scholar 

  7. H.-H. Cho, K. Wepasnick, B. A. Smith, F. K. Bangash, D. H. Fairbrother and W. P. Ball, Langmuir, 2009, 26, 967–981.

    Article  CAS  Google Scholar 

  8. L. Yang, B. Chen, S. Luo, J. Li, R. Liu and Q. Cai, Environmental Science & Technology, 2010, 44, 7884–7889.

    Article  CAS  Google Scholar 

  9. S. E. Davis, M. S. Ide and R. J. Davis, Green Chemistry, 2013, 15, 17–45.

    Article  CAS  Google Scholar 

  10. H. Li, L. Han, J. Cooper-White and I. Kim, Green Chemistry, 2012, 14, 586–591.

    Article  CAS  Google Scholar 

  11. C. D. Vecitis, M. H. Schnoor, M. S. Rahaman, J. D. Schiffman and M. Elimelech, Environmental Science & Technology, 2011, 45, 3672–3679.

    Article  CAS  Google Scholar 

  12. A. S. Brady-Estévez, M. H. Schnoor, C. D. Vecitis, N. B. Saleh and M. Elimelech, Langmuir, 2010, 26, 14975–14982.

    Article  CAS  Google Scholar 

  13. Z. Sun, Y. Zhao, Y. Xie, R. Tao, H. Zhang, C. Huang and Z. Liu, Green Chemistry, 2010, 12, 1007–1011.

    Article  CAS  Google Scholar 

  14. Y. Hou, X. Li, Q. Zhao, X. Quan and G. Chen, Environmental Science & Technology, 2010, 44, 5098–5103.

    Article  CAS  Google Scholar 

  15. Q. Li and J. K. Shang, Environmental Science & Technology, 2009, 43, 8923–8929.

    Article  CAS  Google Scholar 

  16. Z. Liu, X. Zhang, S. Nishimoto, T. Murakami and A. Fujishima, Environmental Science & Technology, 2008, 42, 8547–8551.

    Article  CAS  Google Scholar 

  17. M. Scheringer, Nat Nano, 2008, 3, 322–323.

    Article  CAS  Google Scholar 

  18. S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin and J. R. Lead, Environmental Toxicology and Chemistry, 2008, 27, 1825–1851.

    Article  CAS  Google Scholar 

  19. C.-w. Lam, J. T. James, R. McCluskey, S. Arepalli and R. L. Hunter, Critical Reviews in Toxicology, 2006, 36, 189–217.

    Article  CAS  Google Scholar 

  20. M. R. Wiesner, G. V. Lowry, K. L. Jones, J. M. F. Hochella, R. T. Di Giulio, E. Casman and E. S. Bernhardt, Environmental Science & Technology, 2009, 43, 6458–6462.

    Article  CAS  Google Scholar 

  21. D. e. L. Plata, A. J. Hart, C. M. Reddy and P. M. Gschwend, Environmental Science & Technology, 2009, 43, 8367–8373.

    Article  CAS  Google Scholar 

  22. A. D. Maynard, R. J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberdorster, M. A. Philbert, J. Ryan, A. Seaton, V. Stone, S. S. Tinkle, L. Tran, N. J. Walker and D. B. Warheit, Nature, 2006, 444, 267–269.

    Article  CAS  Google Scholar 

  23. A. D. McNaught and A. Wilkinson, Blackwell Scientific Publications, Oxford 1997.

  24. Z. Tang, N. A. Kotov and M. Giersig, Science, 2002, 297, 237–240.

    Article  CAS  Google Scholar 

  25. F. Huang, H. Zhang and J. F. Banfield, Nano Letters, 2003, 3, 373–378.

    Article  CAS  Google Scholar 

  26. X. Peng, J. Wickham and A. P. Alivisatos, Journal of the American Chemical Society, 1998, 120, 5343–5344.

    Article  CAS  Google Scholar 

  27. C. E. Krill III, L. Helfen, D. Michels, H. Natter, A. Fitch, O. Masson and R. Birringer, Physical Review Letters, 2001, 86, 842–845.

    Article  CAS  Google Scholar 

  28. X. W. Lou and H. C. Zeng, Journal of the American Chemical Society, 2003, 125, 2697–2704.

    Article  CAS  Google Scholar 

  29. R. L. Penn and J. F. Banfield, Science, 1998, 281, 969–971.

    Article  CAS  Google Scholar 

  30. Z. Yu, M. A. Hahn, S. E. Maccagnano-Zacher, J. Calcines, T. D. Krauss, E. S. Alldredge and J. Silcox, ACS Nano, 2008, 2, 1179–1188.

    Article  CAS  Google Scholar 

  31. H. Zhang and J. F. Banfield, American Mineralogist, 1999, 84, 528–535.

    Article  CAS  Google Scholar 

  32. J. Zhang, F. Huang and Z. Lin, Nanoscale, 2010, 2, 18–34.

    Article  Google Scholar 

  33. D. Li, M. H. Nielsen, J. R. I. Lee, C. Frandsen, J. F. Banfield and J. J. De Yoreo, Science, 2012, 336, 1014–1018.

    Article  CAS  Google Scholar 

  34. W. He, J. Lin, X. Lin, N. Lu, M. Zhou and K. H. L. Zhang, Analyst, 2012, 137, 4917–4920.

    Article  CAS  Google Scholar 

  35. W. He, CrystEngComm, 2013, In press.

    Google Scholar 

  36. W. He, J. Lin, B. Wang, S. Tuo, S. T. Pantelides and J. H. Dickerson, Physical Chemistry Chemical Physics, 2012, 14, 4548–4553.

    Article  CAS  Google Scholar 

  37. Y. H. Kim, J. H. Lee, D.-W. Shin, S. M. Park, J. S. Moon, J. G. Nam and J.-B. Yoo, Chemical Communications, 2010, 46, 2292–2294.

    Article  CAS  Google Scholar 

  38. W. He and J. H. Dickerson, Applied Physics Letters, 2011, 98, 081914.

    Article  CAS  Google Scholar 

  39. W. Lv, W. He, K. Wen, X. Wang, Y. Niu, J.H. Dickerson and Z. Wang, Nanoscale, 2014, in press, doi: 10.1039/C3NR04717B.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W., He, W., Wen, K. et al. The evaluation of van der Waals interaction in the oriented-attachment growth of nanotubes. MRS Online Proceedings Library 1705, 1–6 (2014). https://doi.org/10.1557/opl.2014.606

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.606

Key words

Navigation