Skip to main content
Log in

Reflectance Spectroscopy of Organic Matter in Sedimentary Rocks at Mid-Infrared Wavelengths

  • Published:
Clays and Clay Minerals

Abstract

Reflectance spectroscopy is a rapid, non-destructive technique capable of characterizing mineral and organic components within geologic materials at spatial scales that range from μm to km. The degree to which reflectance spectra can be used to provide quantitative information about organic compounds remains poorly understood, particularly for rocks with low organic content that are common in the Earth’s ancient rock record and that may be present on other planetary bodies, such as Mars. In the present study, reflectance spectra (0.35–25 μm) were acquired for a suite of Proterozoic shales and the kerogen was isolated to assess how spectral properties of aliphatic and aromatic C-H absorption bands can be used to predict organic matter abundance (total organic content, TOC, and H/C ratio). A number of spectral parameters were evaluated for organic absorption bands observed in the 3–4 μm wavelength region for comparison with independently measured TOC and H/C values. Ratios of the strengths of aliphatic to aromatic absorption bands were directly correlated to H/C values, but the reflectance spectra for pure kerogens with H/C < 0.2 lacked clear evidence for C-H absorption bands in this spectral region. Organic absorption bands are routinely observed for bulk rock powders with <1 wt.% TOC, but the detection limits of reflectance spectra for TOC may be >1 wt.% or as high as 10 wt.%. Organic detection limits for reflectance spectra are, thus, controlled by both TOC and H/C values, but these parameters can be predicted for clay-rich, kerogen-dominated samples for a range of values that are relevant to drill cores, outcrops, meteorites, and planetary surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, S.T. and Sweet, I.P. (2000) Tectonic control on thirdorder sequences in a siliciclastic ramp-style basin: An example from the Roper Superbasin (Mesoproterozoic), northern Australia. Australian Journal of Earth Sciences, 47, 637–657.

    Article  Google Scholar 

  • Baskin, D.K. (1997) Atomic H/C ratio of kerogen as an estimate of thermal maturity and organic matter conversion. AAPG bulletin, 81, 1437–1450.

    Google Scholar 

  • Bibring, J.-P., Hamm, V., Pilorget, C., Vago, J.L., and the MicrOmega Team. (2017) The MicrOmega Investigation Onboard ExoMars. Astrobiology, 17, 621–626.

    Article  Google Scholar 

  • Breen, C., Clegg, F., Herron, M.M., Hild, G.P., Hillier, S., Hughes, T.L., Jones, T.G.J., Matteson, A., and Yarwood, J. (2008) Bulk mineralogical characterisation of oilfield reservoir rocks and sandstones using diffuse reflectance infrared Fourier transform spectroscopy and partial least squares analysis. Journal of Petroleum Science and Engineering, 60, 1–17.

    Article  Google Scholar 

  • Calderón, F., Haddix, M., Conant, R., Magrini-Bair, K., and Paul, E. (2013) Diffuse-reflectance Fourier-transform midinfrared spectroscopy as a method of characterizing changes in soil organic matter. Soil Science Society of America Journal, 77, 1591–1600.

    Article  Google Scholar 

  • Capaccioni, F., Coradini, A., Filacchione, G., Erard, S., Arnold, G., Drossart, P., De Sanctis, M.C., Bockelee- Morvan, D., Capria, M.T., Tosi, F., Leyrat, C., Schmitt, B., Quirico, E., Cerroni, P., Mennella, V., Raponi, A., Ciarniello, M., McCord, T., Moroz, L., Palomba, E., Ammannito, E., Barucci, M.A., Bellucci, G., Benkhoff, J., Bibring, J.P., Blanco, A., Blecka, M., Carlson, R., Carsenty, U., Colangeli, L., Combes, M., Combi, M., Crovisier, J., Encrenaz, T., Federico, C., Fink, U., Fonti, S., Ip, W.H., Irwin, P., Jaumann, R., Kuehrt, E., Langevin, Y., Magni, G., Mottola, S., Orofino, V., Palumbo, P., Piccioni, G., Schade, U., Taylor, F., Tiphene, D., Tozzi, G.P., Beck, P., Biver, N., Bonal, L., Combe, J.-P., Despan, D., Flamini, E., Fornasier, S., Frigeri, A., Grassi, D., Gudipati, M., Longobardo, A., Markus, K., Merlin, F., Orosei, R., Rinaldi, G., Stephan, K., Cartacci, M., Cicchetti, A., Giuppi, S., Hello, Y., Henry, F., Jacquinod, S., Noschese, R., Peter, G., Politi, R., Reess, J.M., and Semery, A. (2015) The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by Virtis/ Rosetta. Science, 347, aaa0628.

    Article  Google Scholar 

  • Chang, C.-W., Laird, D.A., Mausbach, M.J., and Hurburgh, C.R. (2001) Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Science Society of America Journal, 65, 480.

    Article  Google Scholar 

  • Chen, Y., Furmann, A., Mastalerz, M., and Schimmelmann, A. (2014) Quantitative analysis of shales by KBr-FTIR and micro-FTIR. Fuel, 116, 538–549.

    Article  Google Scholar 

  • Christy, A.A., Hopland, A.L., Barth, T., and Kvalheim, O.M. (1989) Quantitative determination of thermal maturity in sedimentary organic matter by diffuse reflectance infrared spectroscopy of asphaltenes. Organic Geochemistry, 14, 77–81.

    Article  Google Scholar 

  • Clark, R.N. and Roush, T.L. (1984) Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 6329–6340.

    Article  Google Scholar 

  • Clark, R.N., Curchin, J.M., Hoefen, T.M., and Swayze, G.A. (2009) Reflectance spectroscopy of organic compounds: 1. Alkanes. Journal of Geophysical Research, 114, E03001, https://doi.org/10.1029/2008JE003150

    Article  Google Scholar 

  • Clark, R.N., Curchin, J.M., Barnes, J.W., Jaumann, R., Soderblom, L., Cruikshank, D.P., Brown, R.H., Rodriguez, S., Lunine, J., Stephan, K., Hoefen, T.M., Le Mouélic, S., Sotin, C., Baines, K.H., Buratti, B.J., and Nicholson, P.D. (2010) Detection and mapping of hydrocarbon deposits on Titan. Journal of Geophysical Research, 115, E10005, doi: https://doi.org/10.1029/2009/2009JE003369

    Article  Google Scholar 

  • Cloutis, E., Gaffey, M.J., and Moslow, T.F. (1994) Spectral Reflectance Properties of Carbon-Bearing Materials. Icarus, 107, 276–287.

    Article  Google Scholar 

  • Coradine, A., Capaccioni, F., Drossart, P., Semery, A., Arnold, G., Schade, U., Angrilli, F., Barucci, M.., Bellucci, G., Bianchini, G., Bibring, J.., Blanco, A., Blecka, M., Bockelee-Morvan, D., Bonsignori, R., Bouye, M., Bussoletti, E., Capria, M.., Carlson, R., Carsenty, U., Cerroni, P., Colangeli, L., Combes, M., Combi, M., Crovisier, J., Dami, M., DeSanctis, M.., DiLellis, A.., Dotto, E., Encrenaz, T., Epifani, E., Erard, S., Espinasse, S., Fave, A., Federico, C., Fink, U., Fonti, S., Formisano, V., Hello, Y., Hirsch, H., Huntzinger, G., Knoll, R., Kouach, D., Ip, W.., Irwin, P., Kachlicki, J., Langevin, Y., Magni, G., McCord, T., Mennella, V., Michaelis, H., Mondello, G., Mottola, S., Neukum, G., Orofino, V., Orosei, R., Palumbo, P., Peter, G., Pforte, B., Piccioni, G., Reess, J.., Ress, E., Saggin, B., Schmitt, B., Stefanovitch, Stern, A., Taylor, F., Tiphene, D., and Tozzi, G. (1998) Virtis: An imaging spectrometer for the Rosetta mission. Planetary and Space Science, 46, 1291–1304.

    Article  Google Scholar 

  • Coradini, A., Capaccioni, F., Drossart, P., Arnold, G., Ammannito, E., Angrilli, F., Barucci, A., Bellucci, G., Benkhoff, J., Bianchini, G., Bibring, J.P., Blecka, M., Bockelee-Morvan, D., Capria, M.T., Carlson, R., Carsenty, U., Cerroni, P., Colangeli, L., Combes, M., Combi, M., Crovisier, J., Desanctis, M.C., Encrenaz, E.T., Erard, S., Federico, C., Filacchione, G., Fink, U., Fonti, S., Formisano, V., Ip, W.H., Jaumann, R., Kuehrt, E., Langevin, Y., Magni, G., Mccord, T., Mennella, V., Mottola, S., Neukum, G., Palumbo, P., Piccioni, G., Rauer, H., Saggin, B., Schmitt, B., Tiphene, D., and Tozzi, G. (2007) Virtis: An Imaging Spectrometer for the Rosetta Mission. Space Science Reviews, 128, 529–559.

    Article  Google Scholar 

  • Craddock, P.R., Prange, M., and Pomerantz, A.E. (2017) Kerogen thermal maturity and content of organic-rich mudrocks determined using stochastic linear regression models applied to diffuse reflectance IR Fourier transform spectroscopy (DRIFTS). Organic Geochemistry, 110, 122–133.

    Article  Google Scholar 

  • Cruikshank, D.P., Dalle Ore, C.M., Clark, R.N., and Pendleton, Y.J. (2014) Aromatic and aliphatic organic materials on Iapetus: Analysis of Cassini VIMS data. Icarus, 233, 306–315.

    Article  Google Scholar 

  • De Sanctis, M.C., Ammannito, E., McSween, H.Y., Raponi, A., Marchi, S., Capaccioni, F., Capria, M.T., Carrozzo, F.G., Ciarniello, M., Fonte, S., Formisano, M., Frigeri, A., Giardino, M., Longobardo, A., Magni, G., McFadden, L.A., Palomba, E., Pieters, C.M., Tosi, F., Zambon, F., Raymond, C.A., and Russell, C.T. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719–722.

    Article  Google Scholar 

  • Dutkiewicz, A., Volk, H., Ridley, J., and George, S. (2003) Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia. Geology, 31, 981–984.

    Article  Google Scholar 

  • Ferralis, N., Matys, E.D., Knoll, A.H., Hallmann, C., and Summons, R.E. (2016) Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy. Carbon, 108, 440–449.

    Article  Google Scholar 

  • Ganz, H.H. and Kalkreuth, W. (1991) IR classification of kerogen type, thermal maturation, hydrocarbon potential and lithological characteristics. Journal of Southeast Asian Earth Sciences, 5, 19–28.

    Article  Google Scholar 

  • Goudge, T.A., Russell, J.M., Mustard, J.F., Head, J.W., and Bijaksana, S. (2017) A 40,000 yr record of clay mineralogy at Lake Towuti, Indonesia: Paleoclimate reconstruction from reflectance spectroscopy and perspectives on paleolakes on Mars. Geological Society of America Bulletin, 129, 806–819.

    Article  Google Scholar 

  • Greenberger, R.N., Mustard, J.F., Ehlmann, B.L., Blaney, D.L., Cloutis, E.A., Wilson, J.H., Green, R.O., and Fraeman, A.A. (2015) Imaging spectroscopy of geological samples and outcrops: Novel insights from microns to meters. GSA Today, 25, 4–10.

    Article  Google Scholar 

  • Hapke, B. (1993) Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, Cambridge, UK; New York, 513 pp.

    Book  Google Scholar 

  • Hapke, B. (2008) Bidirectional reflectance spectroscopy. Icarus, 195, 918–926.

    Article  Google Scholar 

  • Herron, M., Loan, M., Charsky, A., Herron, S.L., Pomerantz, A.E., and Polyakov, M. (2014) Kerogen content and maturity, mineralogy and clay-typeing from DRIFTS analysis of cuttings or core. Petrophysics, 55, 434–446.

    Google Scholar 

  • Hosterman, J.W., Meyer, R.F., Palmer, C.A., Doughten, M.W., and Anders, D.E. (1989) Chemistry and mineralogy of natural bitumens and heavy oils and their reservoir rocks from the United States, Canada, Trinidad and Tobago, and Venezuela. United States Geological Survey Circular 1047.

    Google Scholar 

  • Izawa, M.R.M., Applin, D.M., Norman, L., and Cloutis, E.A. (2014) Reflectance spectroscopy (350-2500 nm) of solidstate polycyclic aromatic hydrocarbons (PAHs). Icarus, 237, 159–181.

    Article  Google Scholar 

  • Johnston, D.T., Farquhar, J., Summons, R.E., Shen, Y., Kaufman, A.J., Masterson, A.L., and Canfield, D.E. (2008) Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin. Geochimica et Cosmochimica Acta, 72, 4278–4290.

    Article  Google Scholar 

  • Kaplan, H.H. and Milliken, R.E. (2016) Reflectance spectroscopy for organic detection and quantification in claybearing samples: Effects of albedo, clay type, and water content. Clays and Clay Minerals, 64, 167–184.

    Article  Google Scholar 

  • Keil, R.G. and Mayer, L.M. (2014) Mineral Matrices and Organic Matter. Pp. 337–359 in: Treatise on Geochemistry, Vol 12, Reference Module in Earth Systems and Environmental Science (K. Turekian and H. Holland, editors), Elsevier.

    Google Scholar 

  • Leroi, V., Bibring, J.-P., and Berthe, M. (2009) Micromega/IR: Design and status of a near-infrared spectral microscope for in situ analysis of Mars samples. Planetary and Space Science, 57, 1068–1075.

    Article  Google Scholar 

  • Lis, G.P., Mastalerz, M., Schimmelmann, A., Lewan, M.D., and Stankiewicz, B.A. (2005) FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales. Organic Geochemistry, 36, 1533–1552.

    Article  Google Scholar 

  • Luo, G., Ono, S., Beukes, N.J., Wang, D.T., Xie, S., and Summons, R.E. (2016) Rapid oxygenation of Earths atmosphere 2.33 billion years ago. Science Advances, 2, e1600134–e1600134.

    Article  Google Scholar 

  • McCarty, G.W., Reeves, J.B., Reeves, V.B., Follett, R.F., and Kimble, J.M. (2002) Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Science Society of America Journal, 66, 640–646.

    Article  Google Scholar 

  • McCord, T.B., Hansen, G.B., Buratti, B.J., Clark, R.N., Cruikshank, D.P., D’Aversa, E., Griffith, C.A., Baines, E.K.H., Brown, R.H., Dalle Ore, C.M., Filacchione, G., Formisano, V., Hibbitts, C.A., Jaumann, R., Lunine, J.I., Nelson, R.M., and Sotin, C. (2006) Composition of Titan’s surface from Cassini VIMS. Planetary and Space Science, 54, 1524–1539.

    Article  Google Scholar 

  • Mehmani, Y., Burnham, A.K., Vanden Berg, M.D., and Tchelepi, H.A. (2017) Quantification of organic content in shales via near-infrared imaging: Green River Formation. Fuel, 208, 337–352.

    Article  Google Scholar 

  • Milliken, R. and Mustard, J. (2007) Estimating the water content of hydrated minerals using reflectance spectroscopy: I. Effects of darkening agents and low-albedo materials. Icarus, 189, 550–573.

    Google Scholar 

  • Moroz, L.V., Arnold, G., Korochantsev, A.V., and Wäsch, R. (1998) Natural solid bitumens as possible analogs for cometary and asteroid organics: 1. Reflectance spectroscopy of pure bitumens. Icarus, 134, 253–268.

    Google Scholar 

  • Mustard, J. and Hays, J. (1997) Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 mm. Icarus, 125, 145–163.

    Article  Google Scholar 

  • Nash, D.B. and Conel, J.E. (1974) Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite. Journal of Geophysical Research, 79, 1615–1621.

    Article  Google Scholar 

  • Nocita, M., Stevens, A., Toth, G., Panagos, P., van Wesemael, B., and Montanarella, L. (2014) Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biology and Biochemistry, 68, 337–347.

    Article  Google Scholar 

  • Orthous-Daunay, F.-R., Quirico, E., Beck, P., Brissaud, O., Dartois, E., Pino, T., and Schmitt, B. (2013) Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites. Icarus, 223, 534–543.

    Article  Google Scholar 

  • Pilorget, C. and Bibring, J.-P. (2013) NIR reflectance hyperspectral microscopy for planetary science: Application to the MicrOmega instrument. Planetary and Space Science, 76, 42–52.

    Article  Google Scholar 

  • Quirico, E., Moroz, L.V., Schmitt, B., Arnold, G., Faure, M., Beck, P., Bonal, L., Ciarniello, M., Capaccioni, F., Filacchione, G., Erard, S., Leyrat, C., Bockelé-Morvan, D., Zinzi, A., Palomba, E., Drossart, P., Tosi, F., Capria, M.T., De Sanctis, M.C., Raponi, A., Fonti, S., Mancarella, F., Orofino, V., Barucci, A., Blecka, M.I., Carlson, R., Despan, D., Faure, A., Fornasier, S., Gudipati, M.S., Longobardo, A., Markus, K., Mennella, V., Merlin, F., Piccioni, G., Rousseau, B., and Taylor, F. (2016) Refractory and semi-volatile organics at the surface of comet 67P/ Churyumov-Gerasimenko: Insights from the Virtis/Rosetta imaging spectrometer. Icarus, 272, 32–47.

    Article  Google Scholar 

  • Reeves, J.B. (2010) Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma, 158, 3–14.

    Article  Google Scholar 

  • Reuter, D.C. and Simon-Miller, A.A. (2012) The OVIRS Visible/IR Spectrometer on the OSIRIS-Rex Mission. Oral presentation on 10/11/2012 in “Instrumentation for in situ analysis missions (Venus in situ Explorer, Titan, etc.) I.” session. International Workshop on Instrumentation for Planetary Missions (IPM-2012), Greenbelt, Maryland, USA.

    Google Scholar 

  • Reuter, D.C., Simon, A.A., Hair, J., Lunsford, A., Manthripragada, S., Bly, V., Bos, B., Brambora, C., Caldwell, E., Casto, G., Dolch, Z., Finneran, P., Jennings, D., Jhabvala, M., Matson, E., McLelland, M., Roher, W., Sullivan, T., Weigle, E., Wen, Y., Wilson, D., and Lauretta, D.S. (2018) The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral maps of the asteroid Bennu. Space Science Reviews, 214, 54, https://doi.org/https://doi.org/10.1007/s11214-018-0482-9

    Article  Google Scholar 

  • Rivard, B., Lyder, D., Feng, J., Gallie, A., Cloutis, E., Dougan, P., Gonzalez, S., Cox, D., and Lipsett, M.G. (2010) Bitumen content estimation of Athabasca oil sand from broad band infrared reflectance spectra. The Canadian Journal of Chemical Engineering, 88, 830–838.

    Google Scholar 

  • Rivkin, A.S. and Emery, J.P. (2010) Detection of ice and organics on an asteroidal surface. Nature, 464, 1322–1323.

    Article  Google Scholar 

  • Schopf, J.W. (1983) Earth’s Earliest Biosphere: It’s Origin and Evolution. Princeton University Press, Princeton, NJ, USA, 543 pp.

    Google Scholar 

  • Speta, M., Rivard, B., Feng, J., Lipsett, M., and Gingras, M. (2015) Hyperspectral imaging for the determination of bitumen content in Athabasca oil sands core samples. AAPG Bulletin, 99, 1245–1259.

    Article  Google Scholar 

  • Speta, M., Gingras, M.K., and Rivard, B. (2016) Shortwave infrared hyperspectral imaging: A novel method for enhancing the visibility of sedimentary and biogenic features in oil-saturated core. Journal of Sedimentary Research, 86, 830–842.

    Article  Google Scholar 

  • Sunshine, J.M. and Pieters, C.M. (1993) Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model. Journal of Geophysical Research, 98, 9075–9087.

    Article  Google Scholar 

  • Tosca, N.J., Johnston, D.T., Mushegian, A., Rothman, D.H., Summons, R.E., and Knoll, A.H. (2010) Clay mineralogy, organic carbon burial, and redox evolution in Proterozoic oceans. Geochimica et Cosmochimica Acta, 74, 1579–1592.

    Article  Google Scholar 

  • van der Meijde, M., Knox, N.M., Cundill, S.L., Noomen, M.F., van der Werff, H.M., and Hecker, C. (2013) Detection of hydrocarbons in clay soils: A laboratory experiment using spectroscopy in the mid- and thermal infrared. International Journal of Applied Earth Observation and Geoinformation, 23, 384–388.

    Article  Google Scholar 

  • Vohland, M., Besold, J., Hill, J., and Fründ, H.-C. (2011) Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma, 166, 198–205.

    Article  Google Scholar 

  • Washburn, K.E., Birdwell, J.E., Foster, M., and Gutierrez, F. (2015) Detailed description of oil shale organic and mineralogical heterogeneity via Fourier transform infrared microscopy. Energy & Fuels, 29, 4262–4271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, H.H., Milliken, R.E. Reflectance Spectroscopy of Organic Matter in Sedimentary Rocks at Mid-Infrared Wavelengths. Clays Clay Miner. 66, 173–189 (2018). https://doi.org/10.1346/CCMN.2018.064092

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2018.064092

Key Words

Navigation