Skip to main content
Log in

Structural and Spectroscopic Characterization of Montmorillonite Intercalated with N-Butylammonium Cations (N = 1-4) — Modeling and Experimental Study

  • Published:
Clays and Clay Minerals

Abstract

A detailed structural characterization of organo-clays is a key in understanding their properties. In this work, mono-, di-, tri-, and tetra-butylammonium (nBA; n = 1–4) cations intercalated in the layered clay mineral montmorillonite (Mnt) have been studied for the first time by combining a theoretical approach based on density functional theory (DFT) and infrared spectroscopy. The DFT calculations revealed the detailed structure and position of nBA cations in the interlayer space. A relation between the basal spacing (d001 parameter) and the cation size and structure was found, and explained with respect to the structure, composition, and size of the organic cations. Hydrogen bonds between -NHx/-CH3/-CH2 groups of the nBA cations and oxygen atoms of the basal planes of the Mnt layers were found to be an important factor for the arrangement and energetic stabilization of cations in the interlayer space. The N–H…O hydrogen bonds are stronger than C–H…O hydrogen bonds and the stabilization decreases with decreased number of bands. Analysis of DFT-calculated vibrational modes helped in understanding a problematic region of the experimental infrared spectra (4000–3000 cm-1), in which assignment of all vibrational modes unambiguously was not possible because of a significant overlap of broad bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal, V., Chien, Y.Y., and Teppen, B.J. (2007) Molecular simulations to estimate thermodynamics for adsorption of polar organic solutes to montmorillonite. European Journal of Soil Science, 58, 945–957.

    Article  Google Scholar 

  • Balan, E., Lazzeri, M., Delattre, S., Meheut, M., Refson, K., and Winkler, B. (2007) Anharmonicity of inner-OH stretching modes in hydrous phyllosilicates: assessment from first-principles frozen-phonon calculations. Physics and Chemistry of Minerals, 34, 621–625.

    Article  Google Scholar 

  • Berghout, A., Tunega, D., and Zaoui, A. (2010) Density functional theory (DFT) study of the hydration steps of Na+/Mg2+/Ca2+/Sr2+/Ba2+-exchanged montmorillonites. Clays and Clay Minerals, 58, 174–187.

    Article  Google Scholar 

  • Bhattacharyya, K.G. and Sen Gupta, S. (2006) Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution. Separation and Purification Technology, 50, 388–397.

    Article  Google Scholar 

  • Bhattacharyya, K.G. and Sen Gupta, S. (2009) Calcined tetrabutylammonium kaolinite and montmorillonite and adsorption of Fe(II), Co(II) and Ni(II) from solution. Applied Clay Science, 46, 216–221.

    Article  Google Scholar 

  • Blochl, P.E. (1994) Projector augmented-wave method. Physical Review B, 50, 17953–17979.

    Article  Google Scholar 

  • Breen, C., Watson, R., Madejová, J., Komadel, P., and Klapyta, Z. (1997) Acid-activated organoclays: Preparation, characterization and catalytic activity of acid-treated tetraalkylammonium-exchanged smectites. Langmuir, 13, 6473–6479.

    Article  Google Scholar 

  • Chun, Y., Sheng, G.Y., and Boyd, S.A. (2003) Sorptive characteristics of tetraalkylammonium-exchanged smectite clays. Clays and Clay Minerals, 51, 415–420.

    Article  Google Scholar 

  • Czimerova, A., Ceklovsky, A., and Bujdak, J. (2009) Interaction of montmorillonite with phenothiazine dyes and pyronin in aqueous dispersions: A visible spectroscopy study. Central European Journal of Chemistry, 7, 343–353.

    Google Scholar 

  • de Paiva, L.B., Morales, A.R., and Valenzuela Diaz, F.R. (2008) Organoclays: Properties, preparation and applications. Applied Clay Science, 42, 8–24.

    Article  Google Scholar 

  • Desiraju, G.R. and Steiner, T. (2006) The Weak Hydrogen Bond in Structural Chemistry and Biology 2nd Edition. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Frost, R.L., Zhou, Q., He, H., and Xi, Y. (2008) An infrared study of adsorption of para-nitrophenol on mono-, di- and tri-alkyl surfactant intercalated organoclays. Spectrochimica Acta Part A — Molecular and Biomolecular Spectroscopy, 69, 239–244.

    Article  Google Scholar 

  • Fu, Y.-T. and Heinz, H. (2010a) Cleavage energy of alkylammonium-modified montmorillonite and relation to exfoliation in nanocomposites: Influence of cation density, head group structure, and chain length. Chemistry of Materials, 22, 1595–1605.

    Article  Google Scholar 

  • Fu, Y.-T. and Heinz, H. (2010b) Structure and cleavage energy of surfactant-modified clay minerals: Influence of CEC, head group and chain length. Philosophical Magazine, 90, 2415–2424.

    Article  Google Scholar 

  • Ghiaci, M., Kalbasi, R.J., and Sedaghat, M.E. (2003) A kinetic study of 2-ethyl-1-hexanol oxidation by dichromate using clay-supported 1-butyl 4-aza-1-azonia bicyclo 2.2.2 octane chloride as the phase-transfer catalyst. Organic Process Research & Development, 7, 936–938.

    Article  Google Scholar 

  • Guegan, R. (2010) Intercalation of a nonionic surfactant (C10E3) bilayer into a Na-montmorillonite clay. Langmuir, 26, 19175–19180.

    Article  Google Scholar 

  • Guegan, R. (2013) Self-assembly of a non-ionic surfactant onto a clay mineral for the preparation of hybrid layered materials. Soft Matter, 9, 10913–10920.

    Article  Google Scholar 

  • Hafner, J. (2003) Vibrational spectroscopy using ab initio density-functional techniques. Journal of Molecular Structure, 651-653, 3–17.

    Article  Google Scholar 

  • He, H., Frost, R.L., Xi, Y.F., and Zhu, J.X. (2004) Raman spectroscopic study of organo-montmorillonites. Journal of Raman Spectroscopy, 35, 316–323.

    Article  Google Scholar 

  • He, H., Ma, L., Zhu, J., Frost, R.L., Theng, B.K.G., and Bergaya, F. (2014) Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science, 100, 22–28.

    Article  Google Scholar 

  • Heinz, H., Koerner, H., Anderson, K.L., Vaia, R.A., and Farmer, B.L. (2005) Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chemistry of Materials, 17, 5658–5669.

    Article  Google Scholar 

  • Heinz, H., Vaia, R.A., Krishnamoorti, R., and Farmer, B.L. (2007) Self-assembly of alkylammonium chains on montmorillonite: Effect of chain length, head group structure, and cation exchange capacity. Chemistry of Materials, 19, 59–68.

    Article  Google Scholar 

  • Jankovic, L., Kronek, J., Madejova, J., and Hronsky, V. (2015) (9,10-Dihydroxyoctadecyl)ammonium: A structurally unique class of clay intercalable surfactants. European Journal of Inorganic Chemistry, 2841–2850.

    Google Scholar 

  • Jeffrey, G.A. (1997) An Introduction to Hydrogen Bonding. Oxford University Press: New York.

    Google Scholar 

  • Klebow, B. and Meleshyn, A. (2012) Monte Carlo Study of the Adsorption and Aggregation of Alkyltrimethylammonium Chloride on the Montmorillonite-Water Interface. Langmuir, 28, 13274–13283.

    Article  Google Scholar 

  • Kresse, G. and Furthmuller, J. (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169–11186.

    Article  Google Scholar 

  • Kresse, G. and Hafner, J. (1993) Ab-initio molecular-dynamics for open-shell transition-metals. Physical Review B, 48, 13115–13118.

    Article  Google Scholar 

  • Kresse, G. and Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758–1775.

    Article  Google Scholar 

  • Kukkadapu, R.K. and Boyd, S.A. (1995) Tetramethylphosphonium-smectite and tetramethylammonium-smectite as adsorbents of aromatic and chlorinated hydrocarbons — effect of water on adsorption efficiency. Clays and Clay Minerals, 43, 318–323.

    Article  Google Scholar 

  • Lagaly, G., Ogawa, M., and Dékány, I. (2006) Chapter 7.3 Clay Mineral Organic Interactions. 1, 309–377.

    Google Scholar 

  • Lawrence, M.A.M., Kukkadapu, R.K., and Boyd, S.A. (1998) Adsorption of phenol and chlorinated phenols from aqueous solution by tetramethylammonium- and tetramethylphosphonium-exchanged montmorillonite. Applied Clay Science, 13, 13–20.

    Article  Google Scholar 

  • Lee, J.F., Mortland, M.M., Chiou, C.T., Kile, D.E., and Boyd, S.A. (1990) Adsorption of benzene, toluene, and xylene by 2 tetramethylammonium-smectites having different charge-densities. Clays and Clay Minerals, 38, 113–120.

    Article  Google Scholar 

  • Madejová, J., Palkova, H., and Komadel, P. (2010) IR spectroscopy of clay minerals and clay nanocomposites. Pp. 22–71 in: Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications, Volume, 41 (J. Yarwood, R. Douthwaite, and S.B. Duckett, editors). The Royal Society of Chemistry, Cambridge, UK.

    Article  Google Scholar 

  • Madejová, J., Pálková, H., and Jankovič, L’. (2012) Degradation of surfactant-modified montmorillonites in HCl. Materials Chemistry and Physics, 134, 768–776.

    Article  Google Scholar 

  • Pálková, H., Jankovič, L’., Zimowska, M., and Madejová, J. (2011) Alterations of the surface and morphology of tetraalkyl-ammonium modified montmorillonites upon acid treatment. Journal of Colloid and Interface Science, 363, 213–222.

    Article  Google Scholar 

  • Palkova, H., Hronsky, V., Jankovič, L’., and Madejová, J. (2013) The effect of acid treatment on the structure and surface acidity of tetraalkylammonium-montmorillonites. Journal of Colloid and Interface Science, 395, 166–175.

    Article  Google Scholar 

  • Perdew, J.P., Burke, K., and Wang, Y. (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review B, 54, 16533–16539.

    Article  Google Scholar 

  • Raussell-Colom, J.A. and Serratosa, J.M. (1987) Reactions of clays with organic substances. Pp. 371–422 in: Chemistry of Clays and Clay Minerals (A.C.D. Newman, editor). Longman Scientific and Technical, Essex, UK.

    Google Scholar 

  • Ruiz-Hitzky, E. and Van Meerbeek, A. (2006) Clay mineral- and organoclay-polymer nanocomposite. Pp. 583–621 in: Handbook of Clay Science, 1 (F. Bergaya, B.K.G. Theng, and G. Lagaly, editors). Developments in Clay Science. Elsevier.

    Article  Google Scholar 

  • Sen Gupta, S. and Bhattacharyya, K.G. (2005) Interaction of metal ions with clays: I. A case study with Pb(II). Applied Clay Science, 30, 199–208.

    Article  Google Scholar 

  • Sen Gupta, S. and Bhattacharyya, K.G. (2006) Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials, 128, 247–257.

    Article  Google Scholar 

  • Seyidoğlu, T. and Yilmazer, U. (2013) Modification and characterization of bentonite with quaternary ammonium and phosphonium salts and its use in polypropylene nanocomposites. Journal of Thermoplastic Composite Materials, 28, 86–110.

    Article  Google Scholar 

  • Scholtzova, E. and Smrcok, L. (2009) Hydrogen bonding and vibrational spectra in kaolinite-dimethylsulfoxide and -dimethylselenoxide intercalates — a solid-state computational study. Clays and Clay Minerals, 57, 54–71.

    Article  Google Scholar 

  • Scholtzova, E., Benco, L., and Tunega, D. (2008) A model study of dickite intercalated with formamide and N-methylformamide. Physics and Chemistry of Minerals, 35, 299–309.

    Article  Google Scholar 

  • Scholtzová, E., Tunega, D., Madejová, J., Pálková, H., and Komadel, P. (2013) Theoretical and experimental study of montmorillonite intercalated with tetramethylammonium cation. Vibrational Spectroscopy, 66, 123–131.

    Article  Google Scholar 

  • Scholtzová, E., Madejová, J., and Tunega, D. (2014) Structural properties of montmorillonite intercalated with tetraalkylammonium cations — Computational and experimental study. Vibrational Spectroscopy, 74, 120–126.

    Article  Google Scholar 

  • Steiner, T. (2002) The hydrogen bond in the solid state. Angewandte Chemie (International ed. in English), 41, 49–76.

    Google Scholar 

  • Stevens, J.J. and Anderson, S.J. (1996) Orientation of trimethylphenylammonium (TMPA) on Wyoming montmorillonite: Implications for sorption of aromatic compounds. Clays and Clay Minerals, 44, 132–141.

    Article  Google Scholar 

  • Sun, L.L., Tanskanen, J.T., Hirvi, J.T., Kasa, S., Schatz, T., and Pakkanen, T.A. (2015) Molecular dynamics study of montmorillonite crystalline swelling: Roles of interlayer cation species and water content. Chemical Physics, 455, 23–31.

    Article  Google Scholar 

  • Szczerba, M., Klapyta, Z., and Kalinichev, A. (2014) Ethylene glycol intercalation in smectites. Molecular dynamics simulation studies. Applied Clay Science, 91-92, 87–97.

    Article  Google Scholar 

  • Teppen, B.J., Yu, C.H., Miller, D.M., and Schafer, L. (1998) Molecular dynamics simulations of sorption of organic compounds at the clay mineral aqueous solution interface. Journal of Computational Chemistry, 19, 144–153.

    Article  Google Scholar 

  • Theng, B.K.G. (1974) The Chemistry of Clay-Organic Reactions. Adam Hilger, London.

    Google Scholar 

  • Tributh, H. and Lagaly, G. (1986) Aufbereitung und Identifizierung von Boden- und Lagerstättentonen. GIT Labor-Fachzeitschrift, 30, 524–529.

    Google Scholar 

  • Tsipurski, S.I. and Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Minerals, 19, 177–193.

    Article  Google Scholar 

  • Vaia, R.A., Teukolsky, R.K., and Giannelis, E.P. (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 1017–1022.

    Article  Google Scholar 

  • Wibowo, T.Y., Abdullah, A.Z., and Zakaria, R. (2010) Organomontmorillonites as catalysts for selective synthesis of glycerol monolaurate. Applied Clay Science, 50, 280–281.

    Article  Google Scholar 

  • Yariv, S. (2001) IR spectroscopy and Thermo-IR spectroscopy in the study of the fine structure of organo-clay complexes. Pp. 345–462 in: Organo-Clay Complexes and Interactions. (S. Yariv and H. Cross). Marcel Dekker, Inc, New York.

    Chapter  Google Scholar 

  • Zhu, J.X., He, H.P., Zhu, L.Z., Wen, X.Y., and Deng, F. (2005) Characterization of organic phases in the interlayer of montmorillonite using FTIR and C-13 NMR. Journal of Colloid and Interface Science, 286, 239–244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Scholtzová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholtzová, E., Madejová, J., Jankovič, L. et al. Structural and Spectroscopic Characterization of Montmorillonite Intercalated with N-Butylammonium Cations (N = 1-4) — Modeling and Experimental Study. Clays Clay Miner. 64, 401–412 (2016). https://doi.org/10.1346/CCMN.2016.0640404

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2016.0640404

Key Words

Navigation