Skip to main content
Log in

The Structure and Thermochemistry of Three Fe-Mg Chlorites

  • Published:
Clays and Clay Minerals

Abstract

Chlorites are petrogenetically important minerals, exercise controls on petroleum reservoir qualities, are common in alteration zones during hydrothermal ore mineralization, and may form during carbon sequestration in sedimentary formations. Chlorite thermochemistry and structure have been investigated, in the present study, to facilitate an improved understanding of chlorite equilibria.

Three natural IIb chlorites were studied by powder diffraction and calorimetric methods (low-temperature relaxation calorimetry using a Physical Properties Measurement System [PPMS] and differential scanning calorimetry [DSC]). The samples include a low-Fe clinochlore [Mg-Chl] and two Fe-rich chlorites from Windsor [Fe-Chl(W)] and Michigan [Fe-Chl(M)]. The structure of each chlorite was refined in the ideal C2/m symmetry using Rietveld techniques. Lattice parameters for theWindsor chlorite are a = 5.3786(6) Å, b = 9.3176(9) Å, c = 14.2187(6) Å, β = 96.98(10)°. The Michigan chlorite returned a = 5.3897(3) Å, b = 9.3300(3) Å, c = 14.2376(2) Å, β = 97.043(5)° whereas the low-Fe clinochlore yielded a = 5.3301(3) Å, b = 9.2231(8) Å, c = 14.2912(4) Å, β= 97.03(10)°.

Heat capacities (Cp) for the three natural chlorites were measured using both PPMS (2–303 K) and DSC (282–564 K). Employing a combination of Debye-Einstein-Schottky functions, the lattice dynamics component of the Cp at lower temperature was evaluated allowing a separation of the magnetic spin ordering component of Cp from the lattice vibrational part. For Mg-Chl, Fe-Chl(W), and Fe-Chl(M), the polynomials defining the temperature dependencies of the heat capacities between 280 and 570 K are:

Cp = 1185.44(±68.93) − 9753.21(±186.85)T−0.5 − 1.9094(±1.0288)·107T−2 + 3.3013(±1.5363)·109T−3

Cp = 1006.06(±48.46) − 4134.83 (±1515.16)T−0.5 − 40.0949(±6.9413)·106T−2 + 5.9386(±1.0287)·109T−3

and

Cp = 1268.60(±67.16) − 11983.09(±2107.07)T−0.5 − 7.6037(±9.6417)·106T−2 + 1.5398(±1.4187)·109T−3, respectively.

Standard state molar thermodynamic functions, CP, ST, (HTH0)/T, and φ were evaluated for the samples. S298.15 for Fe-Chl(W), Mg-Chl, and Fe-Chl(M) were found to be 499.14 ± 3.40, 437.81 ± 3.00 and 515.06 ± 3.60 J mol−1K−1, respectively, whereas S° for Fe-Chl(W) and Mg-Chl were determined to be 578.24 ± 3.76 and 503.21 ± 3.60 J mol−1K−1, −1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aja, S.U. (2002) The stability of Fe-Mg chlorites in hydrothermal solutions: II. Thermodynamic properties. Clays and Clay Minerals, 50, 591–600.

    Article  Google Scholar 

  • Aja, S.U. and Dyar, M.D. (2002) The stability of Fe-Mg chlorites in hydrothermal solutions I. Results of experimental investigations. Applied Geochemistry, 17, 1219–1239.

    Article  Google Scholar 

  • Aja, S.U. and Small, J.S. (1999) The solubility of a low-Fe clinochlore between 25 and 175°C and Pv = PH2O. European Journal of Mineralogy, 11, 829–842

    Article  Google Scholar 

  • Anderson, G.M. and Crerar, D.A. (1993) Thermodynamics in Geochemistry: The Equilibrium Model. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Armstrong, J.T. (1982) New ZAF and a-factor correction procedures for the quantitative analysis of individual microparticles. Pp. 175–180 in: Microbeam Analysis (K.F.J. Heinrich, editor). San Francisco Press, San Francisco, California, USA.

    Google Scholar 

  • Armstrong, J.T. (1995) CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analyses of thick polished materials, thin films and particles. Microbeam Analyses, 4, 177–200.

    Google Scholar 

  • Bailey, S.W. (1980) Summary of recommendations of AIPEA nomenclature committee on clay minerals. American Mineralogist, 65, 1–7.

    Google Scholar 

  • Ballet, O., Coey, J.M.D., and Burke, K.J. (1985) Magnetic properties of sheet silicates: 2:1:1 layer minerals. Physics and Chemistry of Minerals, 12, 370–378.

    Article  Google Scholar 

  • Behrens, H. and Stuke, A. (2003) Quantification of H2O contents in silicate glasses using IR spectroscopy — a calibration based on hydrous glasses analyzed by Karl- Fischer titration. Glass Science and Technology, 76, 176–189.

    Google Scholar 

  • Benisek, A. and Dachs, E. (2011) On the nature of the excess heat capacity of mixing. Physics and Chemistry of Minerals, 38, 185–191.

    Article  Google Scholar 

  • Benisek, A. and Dachs, E. (2012) A relationship to estimate the excess entropy of mixing: Application in silicate solid solutions and binary alloys. Journal of Alloys and Compounds, 527, 127–131.

    Article  Google Scholar 

  • Benisek, A., Dachs, E., and Kroll, H. (2009) Excess heat capacity and entropy of mixing in high structural state plagioclase. American Mineralogist, 94, 1153–1161.

    Article  Google Scholar 

  • Berger, A., Gier, S., and Krois, P. (2009) Porosity — preserving chlorite cements in shallow-marine volcaniclastic sandstones: evidence from Cretaceous sandstones of the Sawan gas field, Pakistan. American Association of Petroleum Geology Bulletin, 93, 595–615.

    Article  Google Scholar 

  • Berman, R.G. (1988) Internally consistent thermodynamic data for stoichiometric minerals in the system Na2O-K2O-CaOMgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, 445–522.

    Article  Google Scholar 

  • Berman, R.G. and Brown, T.H. (1985) Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation. Contributions to Mineralogy and Petrology, 89, 168–183.

    Article  Google Scholar 

  • Bertoldi, C., Benisek, A., Čemic, L., and Dachs, E. (2001) The heat capacity of two natural chlorite group minerals derived from differential scanning calorimetry. Physics and Chemistry of Minerals, 28, 332–336.

    Article  Google Scholar 

  • Bertoldi, C., Dachs, E., and Appel, P. (2007) Heat pulse calorimetry on natural chlorite-group minerals. American Mineralogist, 92, 553–559.

    Article  Google Scholar 

  • Black, J.R. and Haese, R.R. (2014) Chlorite dissolution rates under CO2 saturated conditions from 50 to 120°C and 120 to 200 bar CO2. Geochimica et Cosmochimica Acta, 125, 225–240.

    Article  Google Scholar 

  • Boerio-Goates, J., Stevens, R., Hom, B.K., Woodfield, B.F., Piccione, P.M., Davis, M.E., and Navrotsky A. (2002) Heat capacities, third-law entropies and thermodynamic functions of SiO2 molecular sieves from T = 0 K to 400 K. Journal of Chemical Thermodynamics, 34, 205–227.

    Article  Google Scholar 

  • Brandt, F., Bosbach, D., Krawczyk-Bärsch, E., Arnold, T., and Bernhard, G. (2003) Chlorite dissolution in the acid pHrange: a combined microscopic and macroscopic approach. Geochimica et Cosmochimica Acta, 67, 1451–1461.

    Article  Google Scholar 

  • Brown, B.E. and Bailey, S.W. (1962) Chlorite polytypism: I. Regular and semi-random one-layer structure. American Mineralogist, 47, 819–850.

    Google Scholar 

  • Dachs, E. and Benisek, A. (2011) A sample-saving method for heat capacity measurements on powders using relaxation calorimetry. Cryogenics, 51, 460–464.

    Article  Google Scholar 

  • Dachs, E. and Bertoldi, C. (2005) Precision and accuracy of the heat-pulse calorimetric technique: Low-temperature heat capacities of milligram-sized synthetic mineral samples. European Journal of Mineralogy, 17, 251–259.

    Article  Google Scholar 

  • Dachs, E., Harlov, D., and Benisek, A. (2010) Excess heat capacity and entropy of mixing along the chlorapatite—fluorapatite binary join. Physics and Chemistry of Minerals, 37, 1–12.

    Article  Google Scholar 

  • Dachs, E., Geiger, C.A., Benisek, A., and Grevel, K.D. (2012a) Thermodynamic properties of grossular garnet: Heat capacity behavior, standard entropy and selected petrologic applications. American Mineralogist, 97, 1299–1313.

    Article  Google Scholar 

  • Dachs, E., Geiger, C.A., and Benisek, A. (2012b) Almandine: Lattice and non-lattice heat capacity behavior and standard thermodynamic properties. American Mineralogist, 97, 1171–1182.

    Google Scholar 

  • De Haller, A. and Fontboté, L. (2009) The Raúl-Condenstable iron oxide copper-gold deposit, Central Coast of Peru: Ore and related hydrothermal alteration, sulfur isotopes, and thermodynamic constraints. Economic Geology, 104, 365–384.

    Article  Google Scholar 

  • Foster, M.D. (1962) Interpretation of the composition and classification of chlorites. Geological Survey Profesional Paper, 414-A, 1–33.

    Google Scholar 

  • Gailhanou, H., Rogez, J., van Miltenburg, J.C., van Genderen, A.C.G., Greńche, J.M., Gilles, C., Jalabert, D., Michau, N., Gaucher, E.C., and Blanc, P. (2009) Thermodynamic properties of chlorite CCa-2. Heat capacities, heat contents and entropies. Geochimica et Cosmochimica Acta, 73, 4738–4749.

    Article  Google Scholar 

  • Gopal, E.S.R. (1966) Specific Heats at Low Temperatures. Heywood Books, London.

    Book  Google Scholar 

  • Gould, K., Pe-piper, G., and Piper, D.J.W. (2010) Relationship of diagenetic chlorite rims to depositional facies in lower Cretaceous reservoir sandstones of the Scotian Basin. Sedimentology, 57, 587–610.

    Article  Google Scholar 

  • Grevel, K.D., Kahl, W.A., Majzlan, J., Navrotsky, A., Lathe, C., and Flockenberg, T. (2005) Thermodynamic properties of magnesium chloritoid. European Journal of Mineralogy, 17, 587–598.

    Article  Google Scholar 

  • Guilbert, J.M. and Park, Jr, C.F. (1986) The Geology of Ore Deposits. W. H. Freeman, New York.

    Google Scholar 

  • Haszeldine, R.S., Quinn, O., England, G., Wilkinson, M., Shipton, Z.K., Evans, J.P., Heath, J., Crossey, L., Ballentine, C.J., and Graham, C.M. (2005) Natural geochemical analogues for carbon dioxide storage in deep geological porous reservoirs, a United Kingdom perspective. Oil & Gas Science and Technology — Revue d’IFP Energies Nouvelle, 60, 33–49.

    Article  Google Scholar 

  • Hemingway, B.S., Kittrick, J.A., Grew, E.S., Nelen, J.A., and London, D. (1984) The heat capacity of osumilite from 298.15 to 1000 K, the thermodynamic properties of natural chlorites to 500 K, and the thermodynamic properties of petalite to 1800 K. American Mineralogist, 69, 701–710.

    Google Scholar 

  • Henderson, C.E., Essene, E.J., Anovitz, L.M., Westrum, E.F., Hemingway, B.S., and Bowman, J.R. (1983) Thermodynamic and phase equilibria of clinochlore, (Mg5Al)[Si3AlO10](OH)8. Transactions of the American Geophysical Union, 64, 466.

    Google Scholar 

  • Holland, T.J.B. and Powell, R. (1998) An internally consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology, 16, 309–343.

    Article  Google Scholar 

  • Holland, T.J.B. and Powell, R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383.

    Article  Google Scholar 

  • Holland, T.J.B., Baker, J., and Powell, R. (1998) Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 10, 395–406.

    Article  Google Scholar 

  • Hutcheon, I. (1990) Clay—carbonate reactions in the Venture area, Scotian Shelf, Nova Scotia, Canada Pp. 199–212 in: Fluid-Mineral Interactions: A tribute to H. P. Eugster (R.J. Spencer and I.-M. Chou, editors). Special Publication, 2, Geochemical Society, St. Louis, Missouri, USA.

    Google Scholar 

  • Jarosewich, E., Nelen, J.A., and Norberg, J.A. (1980) Reference samples for electron microprobe analysis. Geostandards Newsletters, 4, 43–47.

    Article  Google Scholar 

  • Joswig, W. and Fuess, H. (1990) Refinement of a one-layer triclinic chlorite. Clays and Clay Minerals, 38, 216–218.

    Article  Google Scholar 

  • Kittrick, J.A. (1982) Solubility of two high-Mg and two high-Fe chlorites using multiple equilibria. Clays and Clay Minerals, 30, 167–179.

    Article  Google Scholar 

  • Lai, S.K. and Yih, T.S. (1986) Excess entropy and resistivity of Mg-based alloys. Physica, 141B, 191–198.

    Google Scholar 

  • Lanari, P., Wagner, T., and Vidal, O. (2014) A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: applications to P-T sections and geothermometry. Contributions to Mineralogy and Petrology, 167, 968–976.

    Article  Google Scholar 

  • Lougear, A., Grodzicki, M., Bertoldi, C., Trautwein, A.X., Steiner, K., and Amthauer, G. (2000) Mössbauer and molecular orbital study of chlorites. Physics and Chemistry of Minerals, 27, 258–269.

    Article  Google Scholar 

  • Lowson, R.T., Comarmond, M.-C.J., Rajaratnam, G., and Brown, P. (2005) The kinetics of dissolution of chlorite as a function of pH and at 25°C. Geochimica et Cosmochimica Acta, 69, 1687–1699.

    Article  Google Scholar 

  • Lowson, R.T., Brown, P.L., Comarmond, M.-C.J., and Rajaratnam, G. (2007) The kinetics of chlorite dissolution. Geochimica et Cosmochimica Acta, 71, 1431–1447.

    Article  Google Scholar 

  • Lu, J., Kharaka, Y.K., Thorsden, J.J., Horita, J., Karamalidis, A., Grifith, C., Hakala, J.A., Ambats, G., Cole, D.R., Phelps, T.J., Manning, M.A., Cook, P.J., and Hovorka, S.D. (2012) CO2-rock-brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, USA. Chemical Geology, 291, 269–277.

    Article  Google Scholar 

  • Post, J.L. and Plummer, C.C. (1972) The chlorite series of Flagstaff Hill Area, California: A preliminary investigation. Clays and Clay Minerals, 20, 271–283.

    Article  Google Scholar 

  • Robie, R.A., Hemingway, B.S., and Takei, H. (1982) Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. American Mineralogist, 67, 470–482.

    Google Scholar 

  • Rose, A.W. and Burt, D.M. (1979) Hydrothermal alteration. Pp. 173–235 in: Geochemistry of Hydrothermal Ore Deposits (H.L. Barnes, editor). Wiley-Interscience, New Jersey, USA.

    Google Scholar 

  • Rule, A.C. and Bailey, S.W. (1987) Refinement of the crystal structure of a monoclinic ferroan clinochlore. Clays and Clay Minerals, 35, 129–138.

    Article  Google Scholar 

  • Saccocia, P.J. and Seyfried, W.E. Jr. (1993) A resolution of discrepant thermodynamic properties for chamosite retrieved from experimental and empirical techniques. American Mineralogist, 78, 607–611.

    Google Scholar 

  • Smith, J.T. and Ehrenberg, S.N. (1989) Correlation of carbon dioxide abundance with temperature in clastic hydrocarbon reservoirs. Marine and Petroleum Geology, 6, 129–135.

    Article  Google Scholar 

  • Smith, M.M., Wolery, T.J., and Carroll, S.A. (2013) Kinetics of chlorite dissolution at elevated temperatures and CO2 conditions. Chemical Geology, 347, 1–8.

    Article  Google Scholar 

  • Townsend, M.G., Longworth, G., and Kodama, H. (1986) Magnetic interaction at low temperature in chlorite and its products of oxidation: A Mössbauer investigation. The Canadian Mineralogist, 24, 105–115.

    Google Scholar 

  • Ulbrich, H.H. and Waldbaum, D.R. (1976) Structural and other contributions to the third-law entropies of silicates. Geochimica et Cosmochimica Acta, 40, 1–24.

    Article  Google Scholar 

  • Vidal, O., Parra, T., and Vieillard, P. (2005) Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: Application to natural examples and possible role of oxidation. American Mineralogist, 90, 347–358.

    Article  Google Scholar 

  • Welch, M.D., Barris, J., and Klinowski, J. (1995) A multinuclear NMR study of clinochlore. American Mineralogist, 80, 441–447.

    Article  Google Scholar 

  • Zazzi, A., Hirsch, T.K., Leonova, E., Kaikkonen, A., Grins, J., Annersten, H., and Eded, M. (2006) Structural investigations of natural and synthetic chlorite minerals by X-ray diffraction, Mössbauer spectroscopy and solid-state nuclear magnetic resonance. Clays and Clay Minerals, 54, 252–265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Aja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aja, S., Omotoso, O., Bertoldi, C. et al. The Structure and Thermochemistry of Three Fe-Mg Chlorites. Clays Clay Miner. 63, 351–367 (2015). https://doi.org/10.1346/CCMN.2015.0630502

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2015.0630502

Key Words

Navigation