On a domain G of Euclidean space \({{\mathbb{R}}^{n}}\) with flexible cone condition (see the definition below), we establish multiplicative estimates for the Lp-norms of derivatives of a function in terms of the norms of its other derivatives.

Let \(\mathbb{N}\) be the set of positive integers; \({{\mathbb{N}}_{0}} = \mathbb{N} \cup \{ 0\} \); \(n \in \mathbb{N}\); \({{\mathbb{R}}^{n}}\) be n-dimensional Euclidean space of points \(x = ({{x}_{1}},\; \ldots ,\;{{x}_{n}})\); \(1 \leqslant p < \infty \); and \({{L}_{p}}(G)\) be the Lebesgue space of functions defined on an open set \(G \subset {{\mathbb{R}}^{n}}\) and equipped with the norm

$$\left\| {f|{{L}_{p}}(G)} \right\| = {{\left( {\int\limits_{{{\mathbb{R}}^{n}}} {{{{\left| {f(x)} \right|}}^{p}}} dx} \right)}^{{1/p}}},\quad {{L}_{p}} = {{L}_{p}}({{\mathbb{R}}^{n}}).$$

All considered functions \(f{\text{:}}\;G \to \mathbb{R}\) and their derivatives \({{D}^{\alpha }}f\) and \(D_{i}^{s}f\) are assumed to be locally summable on their domains, and \({{G}_{\varepsilon }} = \{ x \in G{\text{:}}\;{\text{dist}}(x,\partial G)\) > ε} for ε > 0. For \(\varphi {\text{:}}\;[0,T] \to \mathbb{R}\), we set

$${\text{||}}\varphi |L_{{2,s}}^{ * }{\text{||}} = {{\left\{ {\int\limits_0^T {{{{({{t}^{{ - s}}}\varphi (t))}}^{2}}} \tfrac{{dt}}{t}} \right\}}^{{1/2}}},\,\,L_{2}^{ * } = L_{{2,0}}^{ * }.$$

For comparison, we present the classical result of Gagliardo [3] and Nirenberg [4] for a domain \(G \subset {{\mathbb{R}}^{n}}\) with a sufficiently smooth boundary:

$$\begin{gathered} {\text{||}}{{D}^{\beta }}f|{{L}_{q}}(G){\text{||}} \leqslant C{{\left( {\sum\limits_{|\alpha | = s} {{\text{||}}{{D}^{\alpha }}f|{{L}_{{{{p}_{1}}}}}(G){\text{||}}} } \right)}^{\theta }} \\ \times {{\left\| {f|{{L}_{{{{p}_{2}}}}}(G)} \right\|}^{{1 - \theta }}} + C\left\| {f|{{L}_{r}}(G)} \right\| \\ \end{gathered} $$

for \(1 \leqslant {{p}_{1}},{{p}_{2}},q,r < \infty \), \(s \in \mathbb{N}\), \(\frac{{\left| \beta \right|}}{s} \leqslant \theta < 1\), and

$$\left| \beta \right| - \frac{n}{q} = \theta \left( {s - \frac{n}{{{{p}_{1}}}}} \right) + (1 - \theta )\left( { - \frac{n}{{{{p}_{2}}}}} \right).$$

Definition 1. A domain \(G \subset {{\mathbb{R}}^{n}}\) is called a domainwith flexible cone condition if, for some \(T \in (0,1]\) and κ > 0 and for any \(x \in G\), there exists a piecewise smooth path

$$\gamma = {{\gamma }_{x}}{\text{:}}\;[0,T] \to G,\quad \gamma (0) = x,\quad \left| {\gamma {\text{'}}} \right| \leqslant 1\quad {\text{a}}.{\text{e}}.,$$
(1)

such that

$${\text{dist}}(\gamma (t),{{\mathbb{R}}^{n}}{\backslash }G) \geqslant \kappa t\quad {\text{for}}\quad 0 < t \leqslant T.$$

We prove the following result.

Theorem 1.Let G be a domain with flexible cone condition. Suppose that, for\(J \geqslant 2\), \(j = 1,\; \ldots ,\;J\), 1 < pj < \(\infty \), 1 < q < \(\infty \), \({{s}_{j}} \in {{\mathbb{N}}_{0}}\), \(0 < {{\theta }_{j}}\) < 1, and\(\sum\limits_1^J {{{\theta }_{j}}} = 1\), \(1 \leqslant r \leqslant q\),

$$\frac{1}{q} \leqslant \sum\limits_{j = 1}^J {\frac{{{{\theta }_{j}}}}{{{{p}_{j}}}}} ,\quad {\text{|}}\alpha {\text{|}} - \frac{n}{q} = \sum\limits_{j = 1}^J {{{\theta }_{j}}} \left( {{{s}_{j}} - \frac{n}{{{{p}_{j}}}}} \right).$$

Then, for some C > 0 and a sufficiently small ε > 0 independent of f,

$$\begin{gathered} {\text{||}}{{D}^{\alpha }}f|{{L}_{q}}(G){\text{||}} \\ \leqslant \;C\prod\limits_{j = 1}^J {{{{\left( {\sum\limits_{i = 1}^n {{\text{||}}D_{i}^{{{{s}_{j}}}}f|{{L}_{{{{p}_{j}}}}}(G){\text{||}}} } \right)}}^{{{{\theta }_{j}}}}}} + C\left\| {f|{{L}_{r}}({{G}_{\varepsilon }})} \right\| \\ \end{gathered} $$
(2)

for any function f such that the right-hand side of the inequality is finite.

Our consideration is based on integral representations of a function over a flexible cone in terms of its derivatives and on estimates of convolution operators.

We will use the following notation. The symbol \(G\) stands for a domain in \({{\mathbb{R}}^{n}}\) with flexible cone condition that does not coincides with \({{\mathbb{R}}^{n}}\). For \(t > 0\), \(E \subset {{\mathbb{R}}^{n}}\), and \(y \in {{\mathbb{R}}^{n}}\), we set

$$\begin{gathered} y + tE: = \left\{ {x{\text{:}}\,x = y + tz,\;z \in E} \right\}, \\ B(x,t): = \left\{ {y{\text{:}}\,{\text{|}}y - x{\text{|}} < t} \right\} = x + B(0,t). \\ \end{gathered} $$

Let χ be the indicator function of the ball \(B(0,1)\) or the interval [–1, 1], and let \(r(x) = {\text{dist}}(x,{{R}^{n}}{\backslash }G)\).

The following remark is important for the subsequent presentation.

Remark 1. Without loss of generality, we may assume that the paths in the definition of a domain with flexible cone condition have the following additional property: for some \({{\varepsilon }_{0}} > 0\), \({{\gamma }_{x}}(t) = x\) for \(x \in G\) and \(0 < t \leqslant min\left\{ {{{\varepsilon }_{0}}r(x),T} \right\} = :\rho (x)\).

Given below, the integral representation of a function in terms of its derivatives is an analogue of integral representations 7(75), 7(76) in [1].

Let \(\vartheta \in {{C}^{\infty }}(\mathbb{R})\), \(\vartheta (u) = 0\) for \(u \leqslant - \delta \), \(\vartheta (u) = 1\) for \(u \geqslant \delta \), \(\tau ,{{\tau }_{1}} \in \mathbb{R}\), \(\delta \in (0,1)\) be sufficiently small, and

$$\omega (u,\tau ) = \frac{{{{d}^{k}}}}{{d{{u}^{k}}}}\left( {\frac{{{{u}^{{k - 1}}}}}{{(k - 1)!}}\vartheta (u - \tau )} \right).$$
(3)

For \(f \in L(G,{\text{loc}})\) and \(0 < t \leqslant T,\) we introduce the average

$$\begin{gathered} {{f}_{t}}(x) = {{t}^{{ - 2n}}}\iint {\Omega \left( {\frac{y}{t},\frac{{{{\gamma }_{x}}(t) - x}}{t}} \right)\Omega \left( {\frac{z}{t}} \right)} \\ \times f(x + y + z)dydz, \\ \end{gathered} $$

where

$$\begin{gathered} \Omega (y,z) = \prod\limits_{i = 1}^n \omega ({{y}_{i}},{{z}_{i}}), \\ \omega (u) = \omega (u,0),\quad \Omega (y) = \Omega (y,0), \\ \end{gathered} $$
$${\text{|}}D_{y}^{\alpha }\Omega (y,z){\text{|}} \leqslant {{C}_{\alpha }}\chi \left( {\frac{{y - z}}{{\delta \sqrt n }}} \right)\quad {\text{for}}\quad \left| z \right| \leqslant 1.$$

Let \(f_{t}^{{(\alpha )}}(x)\) denote the derivative \({{D}^{\alpha }}\) of \({{f}_{t}}(x)\) calculated with fixed x in \({{\gamma }_{x}}(t) - x\) and in \(\gamma _{x}^{'}(t)\). Applying the Newton–Leibniz formula with respect to t, for \(0 < \varepsilon < T\), we obtain

$$f_{\varepsilon }^{{(\alpha )}}(x) = f_{T}^{{(\alpha )}}(x) + {{( - 1)}^{{|\alpha |}}}\int\limits_\varepsilon ^T {\int {\int {{{t}^{{ - 1 - 2n - |\alpha |}}}} } } $$
$$ \times \;\sum\limits_{i = 1}^n {\left[ {{{D}_{i}}{{\Phi }_{i}}\left( {\frac{y}{t}} \right.} \right.} ,\frac{{{{\gamma }_{x}}(t) - x}}{t},\gamma _{x}^{'}(t))D_{i}^{{k - 1}}{{D}^{\alpha }}\Omega \left( {\frac{z}{t}} \right)$$
$$\begin{gathered} + \,{{D}_{i}}\Omega \left( {\frac{y}{t},\frac{{{{\gamma }_{x}}(t)\, - \,x}}{t}} \right)D_{i}^{{k - 1}}{{D}^{\alpha }}{{\Phi }_{i}}\left. {\left( {\frac{z}{t}} \right)} \right] \\ \times \,f(x\, + \,y\, + \,z)dydzdt, \\ \end{gathered} $$
(4)

where \({{\Phi }_{i}}( \cdot ,z,w) \in C_{0}^{\infty }({{\mathbb{R}}^{n}})\), \({{\Phi }_{i}}(y) = {{\Phi }_{i}}(y,0,0)\), and, for some M > 0,

$$\begin{gathered} \left| {\frac{{{{\partial }^{j}}}}{{\partial y_{l}^{j}}}{{\Phi }_{i}}(y,z,w)} \right| \leqslant M\chi \left( {\frac{{y - z}}{{\delta \sqrt n }}} \right)\quad {\text{for}}\quad 1 \leqslant l \leqslant n, \\ j = 0,1,\; \ldots ,\;k,\quad \left| y \right| \leqslant 1,\quad \left| w \right| \leqslant 1. \\ \end{gathered} $$

Here, Di and \({{D}^{\alpha }}\) denote the derivatives of functions with respect to the first argument.

To represent the integral operators on the right-hand side of (4) in the form of the product of two operators, on \(\left\{ {(x,t){\text{:}}\;x \in G,0 < t \leqslant r(x)} \right\}\), we introduce the functions

$${{\varphi }_{i}}(x,t) = \int {{{t}^{{ - n}}}} D_{i}^{{k - 1}}{{D}^{\alpha }}\Omega \left( {\frac{z}{t}} \right)f(x + z)dz,$$
(5)
$${{\psi }_{i}}(x,t) = \int {{{t}^{{ - n}}}} D_{i}^{{k - 1}}{{D}^{\alpha }}{{\Phi }_{i}}\left\{ {\frac{z}{t}} \right\}f(x + z)dz.$$
(6)

Formula (4) can be rewritten as

$$\begin{gathered} f_{\varepsilon }^{{(\alpha )}}(x) = f_{T}^{{(\alpha )}}(x) + {{( - 1)}^{{|\alpha |}}}\int\limits_\varepsilon ^T {\int {{{t}^{{ - 1 - n - |\alpha |}}}} } \\ \times \;\sum\limits_{i = 1}^n {\left[ {{{D}_{i}}{{\Phi }_{i}}\left( {\frac{y}{t},\frac{{{{\gamma }_{x}}(t) - x}}{t},\gamma _{x}^{'}(t)} \right)} \right.} {{\varphi }_{i}}(x + y,t) \\ + \;{{D}_{i}}\Omega \left( {\frac{y}{t},\frac{{{{\gamma }_{x}}(t) - x}}{t}} \right){{\psi }_{i}}(x + y,t)]dydt,\quad 0 < \varepsilon < T. \\ \end{gathered} $$
(7)

Remark 2.Formula (7) holds for ε = 0 with \(f_{0}^{{(\alpha )}}(x)\) = Dαf(x) if the derivative \({{D}^{\alpha }}f\) is locally summable on G. It is derived by passage to the limit, since \(f_{\varepsilon }^{{(\alpha )}}(x)\)Dαf(x) as ε → 0 at each Lebesgue point of the function \({{D}^{\alpha }}f\) and also in the sense of \(L(G,{\text{loc}})\). Formula (7) with ε > 0 makes it possible to apply estimates of integral operators with locally summable kernels.

Theorem 2 (L. Hörmander, J.T. Schwartz, H. Tribel). Let B1and B2be two Banach spaces, G be a domain in\({{\mathbb{R}}^{n}}\),\(K(y)\)for\(y \in {{\mathbb{R}}^{n}}\)be a linear bounded operator from\({{B}_{1}}\)to\({{B}_{2}},\)and\(y \to K(y)\)be a locally summable function on\({{\mathbb{R}}^{n}}\).

Suppose that, on the set\(^{ \circ }{{L}_{\infty }}({{\mathbb{R}}^{n}},{{B}_{1}})\)consisting of\({{B}_{1}}\)-valued strongly measurable functions with a compact support,

$$(Af)(x) = \int K (x,y)f(y)dy.$$

For some\({{p}_{0}} \in (1,\infty )\), \(N > 0\), and\(R > 0\), suppose that

$$\begin{gathered} ({\text{i}})\,\,\,{\text{||}}Af|{{L}_{{{{p}_{0}}}}}({{\mathbb{R}}^{n}},{{B}_{2}}){\text{||}} \leqslant N{\text{||}}\,f|{{L}_{{{{p}_{0}}}}}({{\mathbb{R}}^{n}},{{B}_{1}})\,{\text{||}}\,, \hfill \\ ({\text{ii}})\,\,\int\limits_{|x| > R|y|} {\left\| {K(x - y) - K(x)|{{B}_{1}} \to {{B}_{2}}} \right\|} \,dx \leqslant N\,\,\forall y \in {{\mathbb{R}}^{n}}. \hfill \\ \end{gathered} $$

Then, for all\(p \in (1,\infty )\),

$$\left\| {Af|{{L}_{p}}({{\mathbb{R}}^{n}},{{B}_{2}})} \right\| \leqslant {{C}_{p}}N\left\| {f|{{L}_{p}}({{\mathbb{R}}^{n}},{{B}_{1}})} \right\|,$$

where Cpdoes not depend on f and N.

This theorem is given in [5, Section 2.2.2], where historical references can also be found. It is applied in the cases \({{B}_{i}} = \mathbb{R}\), \(L_{2}^{ * }\) (i = 1, 2).

Lemma 1. Suppose that

$$\begin{gathered} \Omega \in C_{0}^{\infty }(B(0,1)),\quad \int \Omega (x)dx = 0, \\ 1 < p < \infty ,\quad 0 < T < \infty . \\ \end{gathered} $$

Then the operator

$$\begin{gathered} Sf(x,t) = \int {{{t}^{{ - n}}}} \Omega \left( {\frac{y}{t}} \right)f(x + y)dy, \\ S{\text{:}}\;{{L}_{p}}({{\mathbb{R}}^{n}}) \to {{L}_{p}}({{\mathbb{R}}^{n}},L_{2}^{ * }), \\ \end{gathered} $$

is a bounded operator with a norm estimate independent of T.

The proof of a version of this lemma for \(T = \infty \) follows from [6]. For the case under consideration, the argument is similar and can be found in [2].

Lemma 2. Suppose that

$$\Omega \in C_{0}^{\infty }(B(0,1)),\quad \int \Omega (x)dx = 0,$$
$$\begin{gathered} 1 < p \leqslant q < \infty ,\quad 0 \leqslant \mu = \frac{n}{p} - \frac{n}{q}, \\ and\quad 0 < \varepsilon < T < \infty . \\ \end{gathered} $$

Then the operator

$$\begin{gathered} {{R}_{\mu }}f(x) = \int {\int\limits_\varepsilon ^T {{{t}^{{ - n + \mu }}}} } \Omega \left( {\frac{y}{t}} \right)f(x + y,t)\frac{{dt}}{t}dy, \\ {{R}_{\mu }}{\text{:}}\,\,{{L}_{p}}(L_{2}^{ * }) \to {{L}_{q}}, \\ \end{gathered} $$
(8)

is a bounded operator with a norm estimate independent of ε, T.

In the case q = p and μ = 0, the lemma is proved by applying Theorem 2 and the proof can be found in [2].

In the case \(1 < p < q < \infty \) and \(\mu = \frac{n}{p} - \frac{n}{q}\), the lemma is proved by applying the Hölder inequality with respect to t and then the Hardy–Littlewood inequality.

Lemma 3.Let\(\tilde {\chi }(x, \cdot )\)be the indicator function of the flexible cone\(\bigcup\limits_{0 < t < T} B ({{\gamma }_{x}}(t),\kappa t)\), \(1 < p \leqslant q < \infty \), and\(0 \leqslant \mu \)=\(\frac{n}{p} - \frac{n}{q}\).

Then the operator

$$\begin{gathered} ({{A}_{\mu }}f)(x) = \int {\frac{{\tilde {\chi }(x,x + y)f(x + y)dy}}{{{{{\left( {r(x) + \left| y \right|} \right)}}^{{n - \mu }}}}}} , \\ {{A}_{\mu }}{\text{:}}\,\,{{L}_{p}}(G) \to {{L}_{q}}(G), \\ \end{gathered} $$

is bounded.

For the proof in the case p = q and μ = 0, see [1, Section 10.1] or [2]. To prove the lemma in the case \(1 < p < q < \infty \), it suffices to majorize the kernel of the operator by the function \(C{{\left| y \right|}^{{\mu - n}}}\) and to apply the Hardy–Littlewood inequality.

Lemma 4.Suppose that\({{\varepsilon }_{1}} \in (0,1]\),

$$\Omega \in C_{0}^{\infty }(B(0,1)),\quad \int \Omega (x)dx = 0,$$

\(1 < p \leqslant q < \infty \), \(0 \leqslant \mu = \frac{n}{p} - \frac{n}{q}\), and\(0 < \varepsilon < T < \infty \).

Then the operator

$$\begin{gathered} R_{\mu }^{{(1)}}f(x) = \int {\int\limits_\varepsilon ^T {\chi \left( {\frac{t}{{{{\varepsilon }_{1}}r(x)}}} \right)} } \,{{t}^{{ - n + \mu }}}\Omega \left( {\frac{y}{t}} \right)f(x + y,t)\frac{{dt}}{t}dy, \\ R_{\mu }^{{(1)}}{\text{:}}\,{{L}_{p}}(G,L_{2}^{ * }) \to {{L}_{q}}(G), \\ \end{gathered} $$
(9)

is a bounded operator with a norm estimate independent of ε, T.

As proof, we note that the operator

$$R_{\mu }^{{(2)}}f(x) = \int {\int\limits_\varepsilon ^T \chi } \left( {\frac{{{{\varepsilon }_{1}}r(x)}}{t}} \right){{t}^{{ - n + \mu }}}\Omega \left( {\frac{y}{t}} \right)f(x + y,t)\frac{{dt}}{t}dy$$

is a bounded one from \({{L}_{p}}(G,L_{2}^{ * })\) to Lp(G) with a norm estimate independent of T. It remains to be noted that, for \(f \in {{L}_{p}}(G,L_{2}^{ * })\), it is true that \(R_{\mu }^{{(1)}}f = {{R}_{\mu }}f - R_{\mu }^{{(2)}}f\).

The proof of Theorem 1 can be sketched as follows. Define

$$\begin{gathered} s = \sum\limits_1^J {{{\theta }_{j}}} {{s}_{j}},\quad \frac{1}{p} = \sum\limits_1^J {\frac{{{{\theta }_{j}}}}{{{{p}_{j}}}}} , \\ \mu = \frac{n}{p} - \frac{n}{q},\quad {\text{so}}\quad {\text{that}}\quad s - \left| \alpha \right| = \mu . \\ \end{gathered} $$

Formula (7) is rewritten as

$$f_{\varepsilon }^{{(\alpha )}} = f_{T}^{{(\alpha )}} + {{( - 1)}^{{|\alpha |}}}\int\limits_\varepsilon ^T {\int {{{t}^{{ - 1 - n - \mu }}}} } $$
$$\begin{gathered} \times \;\sum\limits_{i = 1}^n {\left[ {{{D}_{i}}{{\Phi }_{i}}\left( {\frac{y}{t},\frac{{{{\gamma }_{x}}(t) - x}}{t},\gamma _{x}^{'}} \right)} \right.} \,{{t}^{{ - s}}}{{\varphi }_{i}}(x + y,t) \\ + \;{{D}_{i}}\Omega \left. {\left( {\frac{y}{t},\frac{{{{\gamma }_{x}}(t) - x}}{t}} \right){{t}^{{ - s}}}{{\psi }_{i}}(x + y,t)} \right]dydt. \\ \end{gathered} $$

Applying the Young inequality yields the estimate

$${\text{||}}f_{T}^{{(\alpha )}}|{{L}_{q}}(G){\text{||}} \leqslant C\left\| {f|{{L}_{r}}({{G}_{\varepsilon }})} \right\|.$$
(10)

We estimate only one term on the right-hand side of the last equality (the estimates for the other terms are similar):

$$I(x) = {{I}_{1}}(x) + {{I}_{2}}(x)$$
$$\begin{gathered} = \int {\int\limits_\varepsilon ^T {{{t}^{{ - 1\, - \,n\, - \,\mu }}}\left[ {\chi \left( {\frac{t}{{{{\varepsilon }_{1}}r(x)}}} \right)} \right.} } {{D}_{i}}{{\Phi }_{i}}\left( {\frac{y}{t}} \right) + \chi \left( {\frac{{{{\varepsilon }_{1}}r(x)}}{t}} \right) \times \\ \times \;{{D}_{i}}{{\Phi }_{i}}\left. {\left( {\frac{y}{t},\frac{{{{\gamma }_{x}}(t) - x}}{t},\gamma {{{\text{'}}}_{x}}} \right)} \right]{{t}^{{ - s}}}{{\varphi }_{i}}(x + y,t)dtdy. \\ \end{gathered} $$
(11)

Here, \({{\varepsilon }_{1}} = {{\varepsilon }_{1}}(\kappa ) > 0\) is sufficiently small.

Next, I1 is estimated with the help of Lemma 4, while I2 is estimated by applying the Hölder inequality with respect to t and Lemma 3. As a result,

$$\left\| {I|{{L}_{p}}(G)} \right\| \leqslant C{\text{||}}{{\varphi }_{i}}|{{L}_{p}}(G,L_{{2,s}}^{ * }){\text{||}}.$$
(12)

Applying the Hölder inequality twice \(\left( {\tfrac{{}}{{p{{\theta }_{j}}}}} \right.\)first, with exponents \(\tfrac{1}{{{{\theta }_{j}}}}\) and, then, with exponents \(\left. {\tfrac{{{{p}_{j}}}}{{p{{\theta }_{j}}}}} \right)\) yields

$${\text{||}}{{\varphi }_{i}}|{{L}_{p}}(G,L_{{2,s}}^{ * }){\text{|}}{{{\text{|}}}^{p}} \leqslant \int\limits_G {\prod\limits_{j = 1}^J {{{{\left( {\int\limits_0^T {{{{[{{t}^{{ - {{s}_{j}}}}}{{\varphi }_{i}}(x,t)]}}^{2}}} \frac{{dt}}{t}} \right)}}^{{\tfrac{1}{2}{{\theta }_{j}}p}}}} } dx$$
$$\begin{gathered} \leqslant \;{{\prod\limits_{j = 1}^J {\left\{ {\int\limits_G {{{{\left( {\int\limits_0^T {{{{[{{t}^{{ - {{s}_{j}}}}}{{\varphi }_{i}}(x,t)]}}^{2}}} \frac{{dt}}{t}} \right)}}^{{\tfrac{1}{2}{{p}_{j}}}}}} } \right\}} }^{{\tfrac{{{{\theta }_{j}}}}{{{{p}_{j}}}}p}}} \\ = \;\prod\limits_{j = 1}^J {{{{\left\| {{{{\left( {\int\limits_0^T {{{{[{{t}^{{ - {{s}_{j}}}}}{{\varphi }_{i}}(x,t)]}}^{2}}} \frac{{dt}}{t}} \right)}}^{{\tfrac{1}{2}}}}|{{L}_{{{{p}_{j}}}}}(G)} \right\|}}^{{{{\theta }_{j}}p}}}} . \\ \end{gathered} $$
(13)

Assuming that \(k \geqslant 2 + ma{{x}_{j}}{{s}_{j}}\), we have

$$\begin{gathered} {{t}^{{ - {{s}_{j}}}}}{{\varphi }_{i}}(x,t) = {{( - 1)}^{{{{s}_{j}}}}}\chi \left( {\frac{t}{{r(x)}}} \right) \\ \times \;\int {{{t}^{{ - n}}}} D_{i}^{{k - 1 - {{s}_{j}}}}\Omega \left( {\frac{y}{t}} \right)D_{i}^{{{{s}_{j}}}}f(x + y)dy. \\ \end{gathered} $$

By Lemma 4,

$${\text{||}}{{\varphi }_{i}}|{{L}_{p}}(G,L_{{2,s}}^{ * }){\text{||}} \leqslant C{\text{||}}D_{i}^{{{{s}_{j}}}}f|{{L}_{{{{p}_{j}}}}}(G){\text{||}}.$$
(14)

An estimate similar to (14) can also be derived for ψi in place of φi.

Combining these results with (10)–(14), we conclude that the set \(\{ f_{\varepsilon }^{{(\alpha )}}{\text{:}}\,\,0 < \varepsilon < \varepsilon {\text{'}}\} \) with some \(\varepsilon {\text{'}} > 0\) is bounded in \(L(G,{\text{loc}})\) and, hence, is weakly compact (see, for example, [7]). Since the generalized differentiation operator is weakly closed, there exists \({{D}^{\alpha }}f \in L(G\), loc) and (11) holds for ε = 0 (\(f_{0}^{{(\alpha )}}\) = Dαf). Therefore, the assertion of the theorem is proved.

Estimates of the form (2) in the case \(G = {{\mathbb{R}}^{n}}\) can be found in [1]. Typically, they lack the last term on the right-hand side of (2). The results of Ven-tuan and M. Troisi concerning multiplicative estimates for norms of derivatives of functions from \(C_{0}^{\infty }({{( - 1,1)}^{n}})\) are also given in [1].