Denote by \( \ell_{\infty} \) the space of bounded sequences \( x=(x_{1},x_{2},\dots) \) with the norm \( \|x\|_{\ell_{\infty}}=\sup_{n\in 𝕅}|x_{n}| \), where \( 𝕅 \) is the set of naturals with the usual semiorder. The linear functional \( B\in\ell^{*}_{\infty} \) is called the Banach limit if

(1) \( B\geq 0 \), i.e., \( Bx\geq 0 \) for all \( x\in\ell_{\infty} \), \( x\geq 0 \),

(2) \( B{𝟙}=1 \), where \( {𝟙}=(1,1,\dots) \),

(3) \( Bx=BTx \) for all \( x\in\ell_{\infty} \), where \( T \) is the shift operator; i.e., \( T(x_{1},x_{2},\dots)=(x_{2},x_{3},\dots) \).

The existence of Banach limits was announced by Mazur in [1] and the proof was presented by Banach in [2]. The definition directly yields

$$ \liminf\limits_{n\to\infty}x_{n}\leq Bx\leq\limsup\limits_{n\to\infty}x_{n} $$

for all \( x\in\ell_{\infty} \) and \( B\in{\mathfrak{B}} \), where \( {\mathfrak{B}} \) is the set of Banach limits. This means that every \( B\in{\mathfrak{B}} \) is a norm-preserving extension of the functional \( x\to\lim\nolimits_{n\to\infty}x_{n} \) from the subspace of convergent sequences to the whole \( \ell_{\infty} \). According to Lorentz [3], a sequence \( x\in\ell_{\infty} \) almost converges to \( \lambda\in 𝕉^{1} \) if \( Bx=\lambda \) for all \( B\in{\mathfrak{B}} \). The set of such sequences is denoted by \( ac_{\lambda} \); while the set of all almost convergent sequences, by \( ac \). In this case we write \( \operatorname{Lim}x_{n}=\lambda \). For example, if \( x_{i+kj}=x_{i} \) for all \( 1\leq i<j \) and \( k\in 𝕅 \), then

$$ \operatorname{Lim}x_{n}=\frac{1}{j}\sum\limits_{i=1}^{j}x_{i}. $$
(1)

In particular, \( \operatorname{Lim}(-1)^{n}=0 \). It was proven in [3] that \( x\in ac_{\lambda} \) if and only if

$$ \lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=m+1}^{m+n}x_{k}=\lambda $$

uniformly in \( m\in 𝕅 \). Sucheston in [4] refined the Lorentz Theorem by showing that

$$ q(x)\leq Bx\leq p(x) $$

for all \( x\in\ell_{\infty} \) and \( B\in{\mathfrak{B}} \), where

$$ q(x)=\lim\limits_{n\to\infty}\inf_{m\in 𝕅}\frac{1}{n}\sum\limits_{k=m+1}^{m+n}x_{k},\quad p(x)=\lim\limits_{n\to\infty}\sup_{m\in 𝕅}\frac{1}{n}\sum\limits_{k=m+1}^{m+n}x_{k}. $$

It is clear that \( {\mathfrak{B}} \) is a closed convex subset of the unit sphere of \( \ell^{*}_{\infty} \); therefore, by the Krein–Milman Theorem, \( {\mathfrak{B}}=\overline{\operatorname{conv}}\operatorname{ext}{\mathfrak{B}} \), where \( \operatorname{ext}{\mathfrak{B}} \) is the set of extreme points of \( {\mathfrak{B}} \) and the closure of the convex hull is taken in the weak\( {}^{*} \) topology.

The set \( ac \) is a nonseparable and uncomplemented closed subspace of \( \ell_{\infty} \) [5] which was studied in [6,7,8] and other articles.

Given \( x\in\ell_{\infty} \), we have

$$ \inf_{y\in ac}\|x-y\|_{\ell_{\infty}}=\frac{1}{2}(p(x)-q(x)). $$

This article is devoted to the further study of \( ac \).

Theorem 1

1. If \( m \) is odd, then

$$ \operatorname{Lim}\sin^{m}nt=0\quad\text{for }t\in[-\pi,\pi]. $$

2. If \( m \) is even, then

$$ \operatorname{Lim}\sin^{m}nt=\begin{cases}0,\quad t=0,\pm\pi,&\\ {\frac{C^{m/2}_{m}}{2^{m}}+\frac{1}{2^{m-1}}\sum\limits_{j\in Q_{m}}(-1)^{(m-2j)/2}\cdot C^{j}_{m}},&\end{cases} $$

where

$$ Q_{m}=\bigg{\{}j:0\leq j<\frac{m}{2},\ \frac{(m-2j)|t|}{2\pi}\in 𝕅\bigg{\}}. $$

Proof

If \( t=0,\pm\pi \), then the equality \( \operatorname{Lim}\sin^{m}nt=0 \) for all \( m\in 𝕅 \) is obvious.

Let \( r\in 𝕅 \), \( t\neq 0,\pm\pi \), and let \( m \) be odd. Then

$$ \begin{gathered}\displaystyle\operatorname{Lim}\sin^{m}nt=\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=r+1}^{r+n}\sin^{m}kt\\ \displaystyle=\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=r+1}^{r+n}\biggl{[}\frac{1}{2^{m-1}}\sum\limits_{j=0}^{(m-1)/2}(-1)^{(m-2j-1)/2}\cdot C^{j}_{m}\cdot\sin(m-2j)kt\biggr{]}\\ \displaystyle=\frac{1}{2^{m-1}}\cdot\sum\limits_{j=0}^{(m-1)/2}(-1)^{(m-2j-1)/2}\cdot C^{j}_{m}\cdot\biggl{[}\lim\limits_{n\to\infty}\frac{1}{n}\cdot\sum\limits_{k=r+1}^{r+n}\sin(m-2j)kt\biggr{]}\\ \displaystyle=\frac{1}{2^{m-1}}\sum\limits_{j=0}^{(m-1)/2}(-1)^{(m-2j-1)/2}\cdot C^{j}_{m}\cdot\operatorname{Lim}\sin(m-2j)nt.\end{gathered} $$

Since \( \operatorname{Lim}\sin(m-2j)nt=0 \) for every \( t\in 𝕉^{1} \); therefore, \( \operatorname{Lim}\sin^{m}nt=0 \).

Let \( r\in 𝕅 \), \( t\neq 0,\pm\pi \), and let \( m \) be even. Then

$$ \begin{gathered}\displaystyle\operatorname{Lim}\sin^{m}nt=\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=r+1}^{r+n}\sin^{m}kt\\ \displaystyle=\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=r+1}^{r+n}\biggl{[}\frac{C^{m/2}_{m}}{2^{m}}+\frac{1}{2^{m-1}}\sum\limits_{j=0}^{(m-2)/2}(-1)^{(m-2j)/2}\cdot C^{j}_{m}\cdot\cos(m-2j)kt\biggr{]}\\ \displaystyle=\frac{C^{m/2}_{m}}{2^{m}}+\frac{1}{2^{m-2}}\sum\limits_{j=0}^{(m-2)/2}(-1)^{(m-2j)/2}\cdot C^{j}_{m}\cdot\biggl{[}\lim\limits_{n\to\infty}\frac{1}{2n}\cdot\sum\limits_{k=r+1}^{r+n}\cos(m-2j)kt\biggr{]}\\ \displaystyle=\frac{C^{m/2}_{m}}{2^{m}}+\frac{1}{2^{m-2}}\cdot\sum\limits_{j=0}^{(m-2)/2}(-1)^{(m-2j)/2}\cdot C^{j}_{m}\cdot\biggl{[}\frac{1}{2}-\lim\limits_{n\to\infty}\frac{1}{n}\cdot\sum\limits_{k=r+1}^{r+n}\sin^{2}\frac{(m-2j)kt}{2}\biggr{]}\\ \displaystyle=\frac{C^{m/2}_{m}}{2^{m}}+\frac{1}{2^{m-2}}\sum\limits_{j=0}^{(m-2)/2}(-1)^{(m-2j)/2}\cdot C^{j}_{m}\cdot\left[\frac{1}{2}-\operatorname{Lim}\sin^{2}\frac{(m-2j)nt}{2}\right],\end{gathered} $$

where

$$ \operatorname{Lim}\sin^{2}\frac{(m-2j)nt}{2}=\begin{cases}0&\text{if }\frac{(m-2j)|t|}{2\pi}\in 𝕅,\\ \frac{1}{2}&\text{for the remaining }t\in[-\pi,\pi].\end{cases} $$

Introduce the set

$$ Q_{m}=\bigg{\{}j:0\leq j<\frac{m}{2},\ \frac{(m-2j)|t|}{2\pi}\in 𝕅\bigg{\}}. $$

Then

$$ \operatorname{Lim}\sin^{m}nt=\frac{C^{m/2}_{m}}{2^{m}}+\frac{1}{2^{m-1}}\sum\limits_{j\in Q_{m}}(-1)^{(m-2j)/2}\cdot C^{j}_{m}.\quad\text{☐} $$

Theorem 2

If \( f \) is a continuous function on \( [-1,1] \), then \( f(\sin nt)\in ac \) for all \( t\in 𝕉^{1} \).

Proof

By the Weierstrass Theorem, for every continuous \( f \) on \( [-1,1] \) and for every \( \varepsilon>0 \) there exists a polynomial \( \sum\nolimits_{m=0}^{k}a_{m}t^{m} \) such that

$$ \biggl{|}f(t)-\sum\limits_{m=0}^{k}a_{m}t^{m}\biggr{|}\leq\varepsilon $$

for all \( t\in[-1,1] \). Hence,

$$ \bigg{|}f(\sin nt)-\sum\limits_{m=0}^{k}a_{m}\sin^{m}nt\bigg{|}\leq\varepsilon $$
(2)

for all \( t\in[-\pi,\pi] \). By Theorem 1,

$$ \sum\limits_{m=0}^{k}a_{m}\sin^{m}nt\in ac $$
(3)

for every \( t\in[-\pi,\pi] \). From (2), (3), and the closedness of \( ac \) in \( \ell_{\infty} \) it follows that \( f(\sin nt)\in ac \) for every \( t\in[-\pi,\pi] \).  ☐


By Theorem 2, the formula \( Af(t)=\operatorname{Lim}f(\sin nt) \) defines some linear operator from \( C[-1,1] \) into the space of periodic functions with period \( 2\pi \).

Theorem 3

The operator \( A \) acts from \( C[-1,1] \) to \( L_{\infty}[-\pi,\pi] \) and the norm of \( A \) equals \( 1 \).

Proof

Let \( \varepsilon>0 \), let \( P_{\varepsilon} \) be a polynomial on \( [-1,1] \) such that \( \|f-P_{\varepsilon}\|_{C}<\varepsilon \), and \( B\in{\mathfrak{B}} \). Then

$$ |Af(t)-AP_{\varepsilon}(t)|=|B(f-P_{\varepsilon})(t)|\leq\|f-P_{\varepsilon}\|_{C}<\varepsilon $$

for every \( t\in[-\pi,\pi] \). By Theorem 1, \( AP_{\varepsilon}(t) \) is a measurable function; therefore, \( Af(t) \) is a measurable function as the uniform limit of a sequence of measurable functions.

The operator \( A \) is positive and the norm of \( A \) is therefore attained at \( f(t)=1 \). Hence, \( \|A\|=1 \).  ☐


Theorem 3 is exact in the sense that \( A \) does not act from \( C[-1,1] \) to \( C[-\pi,\pi] \). Indeed, if \( f_{0}(t)=|t| \), then

$$ Af_{0}(t)=\begin{cases}\frac{1}{j}\sum\limits_{k=1}^{j}\sin\frac{k}{j}\pi&\text{if }t=\frac{i}{j}\pi,\ i,j\in 𝕅,\ i<j,\\ \frac{2}{\pi}&\text{if }\frac{t}{\pi}\text{ is irrational},\\ 0&\text{if }t=k\pi,\ k\in 𝕅\end{cases} $$

(see [9, 10]). The function \( Af_{0}(t) \) is discontinuous at each point \( t\in[-\pi,\pi] \) where \( t/\pi \) is rational. For the power functions \( f_{m}(t)=t^{m} \) we obtain some more exact result.

Assertion 1 of Theorem 1 can be strengthened as follows:

Theorem 4

If \( f \) is an odd continuous function on \( [-1,1] \), then \( \operatorname{Lim}f(\sin nt)=0 \) for all \( t\in[-\pi,\pi] \).


It is well known that every odd continuous function on \( [-1,1] \) can be approximated however closely by polynomials of odd degrees. This and Theorem 1 imply Theorem 4.

Theorem 4 states that the kernel of \( A \) contains all odd continuous functions. It turns out that the kernel of \( A \) also contains some even functions. Indeed, if

$$ f_{0}(t)=\begin{cases}0,&t=0,\\ t^{2}-\frac{1}{2},&t\neq 0,\end{cases} $$

then

$$ f_{0}(\sin nt)=\sin^{2}nt-\frac{1}{2}=\frac{\sin^{2}nt-\cos^{2}nt}{2}=-\frac{\cos 2nt}{2}\in ac_{0} $$

for all \( t\neq 0,\pm\pi \) and \( f_{0}(\sin nt)\in ac_{0} \) for \( t=0,\pm\pi \).

The asymptotic behavior of the sequence \( \operatorname{Lim}\sin^{m}nt \) is described by

Theorem 5

If \( -\pi\leq t\leq\pi \), then

$$ \lim\limits_{m\to\infty}\operatorname{Lim}\sin^{m}nt=\begin{cases}\frac{1}{j}&\text{if }t=\frac{i}{j}\pi,\ |i|,j\in 𝕅,\ |i|<j\text{ and }j\text{ is even,}\\ 0&\text{for the remaining }t\in[-\pi,\pi].\end{cases} $$

Proof

Let \( t=\frac{i}{j}\pi \). Then \( \sin nt \) is a periodic sequence with period \( 2j \). If \( j \) is odd, then \( \bigl{|}\sin n\frac{i}{j}\pi\bigr{|}<1 \) for all \( 1\leq n\leq 2j \). Hence,

$$ \lim\limits_{m\to\infty}\sin^{m}n\frac{i}{j}\pi=0. $$

Using (1), we obtain

$$ \lim\limits_{m\to\infty}\operatorname{Lim}\sin^{m}n\frac{i}{j}\pi=0. $$

If \( j \) is even, then

$$ \sin n\frac{i}{j}\pi=1\quad\text{for }n=\frac{j}{2},\frac{3j}{2}, $$
$$ \bigg{|}\sin n\frac{i}{j}\pi\bigg{|}<1\quad\text{for }n\neq\frac{j}{2},\frac{3j}{2}. $$

Applying (1) again, we get

$$ \lim\limits_{m\to\infty}\operatorname{Lim}\sin^{m}n\frac{i}{j}\pi=\frac{1}{j}. $$

Consider the case when \( t/\pi \) is irrational. In this case \( \{nt\ (\operatorname{mod}2\pi) \), \( n\in 𝕅\} \) is a dense uniformly distributed subset of \( [0,2\pi) \). Let \( 0<\varepsilon<\pi/2 \). Consider

$$ Q=Q_{\varepsilon,t}=\bigg{\{}n:n\in 𝕅,\ \bigg{|}nt-\bigg{(}\frac{\pi}{2}+k\pi\bigg{)}\bigg{|}>\varepsilon\ \text{for all }(k\in 𝕅)\bigg{\}} $$

and the complement \( \complement Q \) of \( Q \). Denote the density of \( \complement Q \) by \( q \). By construction,

$$ q=\frac{4\varepsilon}{2\pi}=\frac{2\varepsilon}{\pi}. $$
(4)

If \( n\in Q \), then

$$ 1-\sin nt\geq 1-\sin\bigg{(}\frac{\pi}{2}-\varepsilon\bigg{)}=1-\cos\varepsilon=2\sin^{2}\frac{\varepsilon}{2}\geq\frac{\varepsilon^{2}}{5},\quad\sin nt\leq 1-\frac{\varepsilon^{2}}{5}. $$

Hence,

$$ \sin^{m}nt\leq\bigg{(}1-\frac{\varepsilon^{2}}{5}\bigg{)}^{m}\leq\bigg{(}1-\frac{\varepsilon^{2}}{5}\bigg{)}^{1/\varepsilon^{3}} $$
(5)

for \( m>1/\varepsilon^{3} \).

Estimate the sequence \( \sin^{m}nt \) on \( \complement Q \). To this end, consider the Cesàro operator

$$ (Cx)_{j}=\frac{1}{j}\sum\limits_{i=1}^{j}x_{i}. $$

It is well known that \( C \) acts in \( \ell_{\infty} \) and the norm of \( Q \) equals 1. There exists \( B\in{\mathfrak{B}} \) such that \( B \) is invariant under \( C \), i.e., \( Bx=BCx \) for all \( x\in\ell_{\infty} \) [8]. The set of such Banach limits is denoted by \( {\mathfrak{B}}(C) \). Put

$$ (\chi_{\complement Q})_{k}=\begin{cases}1,&k\in\complement Q,\\ 0,&k\in Q,\end{cases}\quad k\in 𝕅. $$

Then \( \lim\nolimits_{j\to\infty}(C\chi_{\complement Q})_{j} \) exists and is equal to the density of \( \complement Q \). From this and (4) we obtain

$$ \begin{gathered}\displaystyle\operatorname{Lim}\sin^{m}nt\chi_{\complement Q}=B\sin^{m}nt\chi_{\complement Q}=BC\sin^{m}nt\chi_{\complement Q}\\ \displaystyle\leq\limsup\limits_{j\to\infty}(C\sin^{m}\chi_{\complement Q})_{j}\leq\limsup\limits_{j\to\infty}(\chi_{\complement Q})_{j}=q=\frac{2\varepsilon}{\pi},\end{gathered} $$

where \( B\in{\mathfrak{B}}(C) \). From the above estimate and (5) it follows that

$$ \begin{gathered}\displaystyle\lim\limits_{m\to\infty}\operatorname{Lim}\sin^{m}nt\leq\lim\limits_{m\to\infty}\operatorname{Lim}\sin^{m}nt\chi_{Q}+\lim\limits_{m\to\infty}\operatorname{Lim}\sin^{m}nt\chi_{\complement Q}\\ \displaystyle\leq\bigg{(}1-\frac{\varepsilon^{2}}{5}\bigg{)}^{1/\varepsilon^{3}}+\frac{2\varepsilon}{\pi}.\end{gathered} $$

By arbitrariness of \( \varepsilon>0 \),

$$ \lim\limits_{m\to\infty}\operatorname{Lim}\sin^{m}nt=0.\quad\text{☐} $$

The authors are grateful to S. S. Kutateladze, A. S. Usachev, and N. N. Avdeev for their valuable remarks.