Skip to main content

Technological Paradigms and Technological Trajectories

  • Living reference work entry
  • First Online:
The Palgrave Encyclopedia of Strategic Management

Abstract

The notions of technological paradigms and technological trajectories are central to the interpretation of innovation as an evolutionary process and to the understanding of invariances in the knowledge structure and in the ways technological knowledge accumulates and, together, what distinguishes different fields and different periods of technological advance.

This entry was originally published on Palgrave Connect under ISBN 978-1-137-49190-9. The content has not been changed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abernathy, W.J., and J. Utterback. 1978. Patterns of innovation in industry. Technology Review 80: 40–47.

    Google Scholar 

  • Alchian, A. 1963. Reliability of progress curves in airframe production. Econometrica 31: 679–693.

    Article  Google Scholar 

  • Allen, R.C. 1983. Collective invention. Journal of Economic Behavior & Organization 4: 1–24.

    Article  Google Scholar 

  • Argote, L., and D. Epple. 1990. Learning curves in manufacturing. Science 247: 920–924.

    Article  Google Scholar 

  • Arora, A., A. Fosfuri, and A. Gambardella. 2002. Markets for technology. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Arrow, K. 1962. The economic implications of learning by doing. Review of Economic Studies 29: 155–173.

    Article  Google Scholar 

  • Arundel, A., G. van de Paal, and L. Soete. 1995. Innovation strategies of Europe’s largest firms. Results of the PACE survey, European innovation monitoring system, Report No. 23.. Brussels: European Commission.

    Google Scholar 

  • Auerswald, P., S. Kaufmann, J. Lobo, and K. Shell. 2000. The production recipe approach to modelling technological innovation: An application to learning by doing. Journal of Economic Dynamics and Control 24: 389–450.

    Article  Google Scholar 

  • Baloff, N. 1971. Extension of the learning curve: Some empirical results. Operation Research Quarterly 22: 329–340.

    Article  Google Scholar 

  • Bonaccorsi, A., P. Giuri, and F. Pierotti. 2005. Technological frontiers and competition in multi-technology sectors: Micro evidence from the aero-engine industries. Economics of Innovation and New Technology 14: 23–42.

    Article  Google Scholar 

  • Breschi, S., F. Malerba, and L. Orsenigo. 2000. Technological regimes and Schumpeterian patterns of innovation. Economic Journal 110: 388–410.

    Article  Google Scholar 

  • Bresnahan, T., S. Greenstein, and R. Henderson. 2008. Schumpeterian competition within computing markets and organizational diseconomies of scope. Working paper, Kellogg School of Management, Northwestern University.

    Google Scholar 

  • Cohen, W., R.R. Nelson, and J.P. Walsh. 2002. Links and impacts: The influence of public research on industrial R&D. Management Science 48: 1–23.

    Article  Google Scholar 

  • Conley, P. 1970. Experience curves as a planning tool. IEEE Spectrum 7: 63–68.

    Article  Google Scholar 

  • Constant, E. 1980. The origins of the turbojet revolution. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • David, P.A. 2001a. From keeping nature’s secrets to the institutionalization of open science. Discussion Papers in Economic and Social History, University of Oxford.

    Google Scholar 

  • David, P.A. 2001b. Path dependence, its critics and the quest for ‘historical economics’. In Evolution and path dependence in economic ideas: Past and present, ed. P. Garrouste and S. Ioannides. Cheltenham: Edward Elgar.

    Google Scholar 

  • David, P.A. 2004. Understanding the emergence of ‘open science’ institutions: Functionalist economics in historical context. Industrial and Corporate Change 13: 571–589.

    Article  Google Scholar 

  • David, P.A., and B. Hall. 2006. Property and the pursuit of knowledge: IPR issues affecting scientific research. Research Policy 35: 767–771.

    Article  Google Scholar 

  • Dosi, G. 1982. Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy 11: 147–162.

    Article  Google Scholar 

  • Dosi, G. 1984. Technical change and industrial transformation. London: Macmillan.

    Book  Google Scholar 

  • Dosi, G. 1988. Sources, procedures and microeconomic effects of innovation. Journal of Economic Literature 26: 1120–1171.

    Google Scholar 

  • Dosi, G., and R.R. Nelson. 2010. Technical change and industrial dynamics as evolutionary processes. In Handbook of the economics of innovation, vol. 1, ed. B.H. Hall and N. Rosenberg. Burlington: Academic.

    Google Scholar 

  • Dosi, G., P. Llerena, and M. Sylos Labini. 2006a. Science-technology-industry links and the ‘European Paradox’: Some notes on the dynamics of scientific and technological research in Europe. Research Policy 35: 1450–1464.

    Article  Google Scholar 

  • Dosi, G., L. Marengo, and C. Pasquali. 2006b. How much should society fuel the greed of innovators? On the relations between appropriability, opportunities and rates of innovation. Research Policy 35: 1110–1121.

    Article  Google Scholar 

  • Dutton, J.M., and A. Thomas. 1984. Treating progress functions as a managerial opportunity. Academy of Management Review 9: 235–247.

    Google Scholar 

  • Frenken, K., and L. Leydesdorff. 2000. Scaling trajectories in civil aircraft (1913–1997). Research Policy 29: 331–338.

    Article  Google Scholar 

  • Frenken, K., P.P. Saviotti, and M. Trommetter. 1999. Variety and niche creation in aircraft, helicopters, motorcycles and microcomputers. Research Policy 28: 469–488.

    Article  Google Scholar 

  • Giuri, P., C. Tomasi, and G. Dosi. 2007. L’industria aerospaziale. Innovazione, tecnologia e strategia economica. Milan: Il Sole 24 Ore e Fondazione Cotec.

    Google Scholar 

  • Gordon, T.J., and T.R. Munson. 1981. Research into technology output measures. Glastonbury: The Future Group.

    Google Scholar 

  • Granstrand, O. 1999. The economics and management of intellectual property. Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Gritsevskyi, A., and N. Nakicenovic. 2000. Modeling uncertainty of induced technological change. Energy Policy 28: 907–921.

    Article  Google Scholar 

  • Grupp, H. 1992. Dynamics of science-based innovation. Berlin: Springer.

    Book  Google Scholar 

  • Heller, M., and R. Eisenberg. 1998. Can patents deter innovation? The anti-commons in biomedical research. Science 280: 698–701.

    Article  Google Scholar 

  • Henderson, R.M., and K.B. Clark. 1990. Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms. Administrative Science Quarterly 35: 9–30.

    Article  Google Scholar 

  • Jaffe, A.B.. 2000. The U.S. patent system in transition: Policy innovation and the innovation process. Research Policy 29: 531–577.

    Article  Google Scholar 

  • Jovanovic, B., and P.L. Rousseau. 2002. Moore’s law and learning by doing. Review of Economic Dynamics 5: 346–375.

    Article  Google Scholar 

  • Klevorick, A.K., R.C. Levin, R.R. Nelson, and S.G. Winter. 1995. On the sources and significance of interindustry differences in technological opportunities. Research Policy 24: 185–205.

    Article  Google Scholar 

  • Kline, S.J., N. Rosenberg, S.J. Kline, and N. Rosenberg. 1986. An overview of innovation. In The positive sum strategy: Harnessing technology for economic growth. Washington, DC: National Academy Press.

    Google Scholar 

  • Kuhn, T. 1962. The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Levin, R.C., W.M. Cohen, and D.C. Mowery. 1985. R&D appropriability, opportunity and market structure: New evidence on some Schumpeterian hypotheses. American Economic Review, Papers and Proceedings 75: 20–24.

    Google Scholar 

  • Lundberg, E. 1961. Produktivitet och RûÊntabilitet. Stockholm: Studieförbundet Näringsliv och samhälle.

    Google Scholar 

  • MacDonald, A., and L. Schrattenholzer. 2001. Learning rates for energy technologies. Energy Policy 29: 255–261.

    Article  Google Scholar 

  • Malerba, F., and L. Orsenigo. 1996. The dynamics and evolution of industries. Industrial and Corporate Change 5: 51–87.

    Article  Google Scholar 

  • Mansfield, E., M. Schwartz, and S. Wagner. 1981. Imitation costs and patents: An empirical study. The Economic Journal 91: 907–918.

    Article  Google Scholar 

  • Marengo, L., C. Pasquali, M. Valente, and G. Dosi. 2009. Appropriability, patents, and rates of innovation in complex products industries, LEM working paper series, 2009/05. Pisa: Scuola Superiore Sant’Anna.

    Google Scholar 

  • Mazzoleni, R., and R.R. Nelson. 1998. The benefits and costs of strong patent protection: A contribution to the current debate. Research Policy 27: 273–284.

    Article  Google Scholar 

  • Merges, R.P., and R.R. Nelson. 1994. On limiting or encouraging rivalry in technical progress: The effect of patent scope decisions. Journal of Economic Behavior & Organization 25: 1–24.

    Article  Google Scholar 

  • Mokyr, J. 2002. The gifts of Athena: Historical origins of the knowledge economy. Princeton: Princeton University Press.

    Google Scholar 

  • Mokyr, J. 2010. The contribution of economic history to the study of innovation and technical change. In Handbook of the economics of innovation, vol. 1, ed. B.H. Hall and N. Rosenberg. Burlington: Academic.

    Google Scholar 

  • Murmann, J.P., and K. Frenken. 2006. Toward a systematic framework for research on dominant designs, technological innovations, and industrial change. Research Policy 35: 925–952.

    Article  Google Scholar 

  • Murray, F.E., P. Aghion, M. Dewatripont, J. Kolev, and S. Stern. 2009. Of mice and academics: Examining the effect of openness on innovation. NBER Working Paper Series, 14819. Cambridge, MA.

    Google Scholar 

  • Neij, L. 1997. Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology. Energy Policy 25: 1099–1107.

    Article  Google Scholar 

  • Nelson, R.R. 1981. Research on productivity growth and productivity differences: Dead ends and new departures. Journal of Economic Literature, American Economic Association 19: 1029–1064.

    Google Scholar 

  • Nelson, R.R. 2003. On the uneven evolution of human know-how. Research Policy 32: 909–922.

    Article  Google Scholar 

  • Nelson, R.R. 2004. The market economy, and the scientific commons. Research Policy 33: 455–471.

    Article  Google Scholar 

  • Nelson, R.R. 2006. Reflections on ‘The Simple Economics of Basic Scientific Research’: Looking back and looking forward. Industrial and Corporate Change 15: 145–149.

    Article  Google Scholar 

  • Nelson, R.R., and K. Nelson. 2002. On the nature and evolution of human know-how. Research Policy 31: 719–733.

    Article  Google Scholar 

  • Nelson, R.R., and S.G. Winter. 1977. In search of a useful theory of innovation. Research Policy 6: 36–76.

    Article  Google Scholar 

  • Nelson, R.R., and E.N. Wolff. 1997. Factors behind cross-industry differences in technical progress. Structural Change and Economic Dynamics 8: 205–220.

    Article  Google Scholar 

  • Nordhaus, W.D. 2007. Two centuries of productivity growth in computing. Journal of Economic History 67: 128–159.

    Article  Google Scholar 

  • Nuvolari, A. 2004. Collective invention during the British Industrial Revolution: The case of the Cornish pumping engine. Cambridge Journal Economics 28: 347–363.

    Article  Google Scholar 

  • Pavitt, K. 1999. Technology, management and systems of innovation. Cheltenham and Lyme: Edward Elgar.

    Google Scholar 

  • Pavitt, K. 2001. Public policies to support basic research: What can the rest of the world learn from US theory and practice? (and what they should not learn). Industrial and Corporate Change 10: 761–779.

    Article  Google Scholar 

  • Rosenberg, N. 1976. Perspectives on technology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rosenberg, N. 1982. Inside the black box: Technology and economics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rosenberg, N. 1994. Exploring the black box: Technology, economics, and history. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rosenberg, N. 2009. Some critical episodes in the progress of medical innovation: An Anglo-American perspective. Research Policy 3: 234–242.

    Article  Google Scholar 

  • Rosenbloom, R.S., and M.A. Cusumano. 1987. Technological pioneering and competitive advantage: The birth of the VCR industry. California Management Review 29: 51–76.

    Article  Google Scholar 

  • Sahal, D. 1981. Patterns of technological innovation. New York: Addison-Wesley.

    Google Scholar 

  • Sahal, D. 1985. Technological guideposts and innovation avenues. Research Policy 14: 61–82.

    Article  Google Scholar 

  • Saviotti, P.P. 1996. Technological evolution, variety and the economy. Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Saviotti, P.P., and A. Trickett. 1992. The evolution of helicopter technology, 1940–1986. Economics of Innovation and New Technologies 2: 111–130.

    Article  Google Scholar 

  • Suarez, F.F., and J.M. Utterback. 1995. Dominant designs and the survival of firms. Strategic Management Journal 16: 415–430.

    Article  Google Scholar 

  • Teece, D.J. 1986. Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy. Research Policy 15: 285–305.

    Article  Google Scholar 

  • Teece, D.J., R. Rumelt, G. Dosi, and S.G. Winter. 1994. Understanding corporate coherence: Theory and evidence. Journal of Economic Behavior & Organization 23: 1–30.

    Article  Google Scholar 

  • Thompson, P. 2010. Learning by doing. In Handbook of the economics of innovation, vol. 1, ed. B.H. Hall and N. Rosenberg. Burlington: Academic.

    Google Scholar 

  • Tushman, M.L., and P. Anderson. 1986. Technological discontinuities and organizational environments. Administrative Science Quarterly 31: 439–465.

    Article  Google Scholar 

  • Utterback, J.M., and F.F. Suarez. 1993. Innovation, competition, and industry structure. Research Policy 22: 1–21.

    Article  Google Scholar 

  • Von Hippel, E. 2005. Democratizing innovation: The evolving phenomenon of user innovation. Journal für Betriebswirtschaft 55: 63–78.

    Article  Google Scholar 

  • Winter, S.G. 1993. Patents and welfare in an evolutionary model. Industrial and Corporate Change 2: 211–231.

    Article  Google Scholar 

  • Wright, T.P. 1936. Factors affecting the costs of airplanes. Journal of Aeronautical Sciences 10: 302–328.

    Google Scholar 

  • Yelle, L.E. 1979. The learning curve: Historical review and comprehensive survey. Decision Sciences 10: 302–308.

    Article  Google Scholar 

Further Reading

  • Beardsley, G., and E. Mansfield. 1978. A note on the accuracy of industrial forecasts of the profitability of new products and processes. Journal of Business 51: 127–135.

    Article  Google Scholar 

  • Bresnahan, T.F., and M. Trajtenberg. 1995. General purpose technologies: Engines of growth? Journal of Econometrics 65: 83–108.

    Article  Google Scholar 

  • Bush, V. 1945. Science: The endless frontier. Washington, DC: GPO.

    Google Scholar 

  • Castaldi, C., R. Fontana, and A. Nuvolari. 2009. ‘Chariots of Fire’: The evolution of tank technology, 1915–1945. Journal of Evolutionary Economies 19: 545–566.

    Article  Google Scholar 

  • Chataway, J., J. Tait, and D. Wield. 2004. Understanding company R&D strategies in agro-biotechnology: Trajectories and blind spots. Research Policy 33: 1041–1057.

    Article  Google Scholar 

  • Cohen, W., and R. Levin. 1989. Empirical studies of innovation and market structure. In Handbook of industrial organization, vol. 2, ed. R. Schmalensee and R. Willig. Amsterdam: Elsevier.

    Google Scholar 

  • Consoli, D. 2005. The dynamics of technological change in UK retail banking services: An evolutionary perspective. Research Policy 34: 461–480.

    Article  Google Scholar 

  • Dasgupta, P., and P.A. David. 1994. Towards a new economics of science. Research Policy 23: 487–521.

    Article  Google Scholar 

  • Dawid, H. 2006. Agent-based models of innovation and technological change. In Handbook of computational economics, Vol. 2: Agent-based computational economics, ed. L. Tesfatsion and K.L. Judd. Amsterdam: Edward Elgar.

    Google Scholar 

  • Dew, N. 2006. Incommensurate technological paradigms? Quarreling in the RFID industry. Industrial and Corporate Change 15: 785–810.

    Article  Google Scholar 

  • Dosi, G., and M. Egidi. 1991. Substantive and procedural uncertainty: An exploration of economic behaviours in changing environments. Journal of Evolutionary Economics 1: 145–168.

    Article  Google Scholar 

  • Dosi, G., K. Pavitt, and L. Soete. 1990. The economics of technical change and international trade. Brighton/Wheatsheaf/New York: New York University Press.

    Google Scholar 

  • Freeman, C., and C. Perez. 1988. Structural crises of adjustment: Business cycles and investment behavior. In Technical change and economic theory, ed. C. Freeman, R.R. Nelson, G. Silverberg, and L. Soete. London: Pinter Publishers.

    Google Scholar 

  • Freeman, C., and L. Soete. 1997. The economics of industrial innovation, 3rd ed. London/Washington, DC: Pinter.

    Google Scholar 

  • Gary, M.S., G. Dosi, and D. Lovallo. 2008. Boom and bust behavior: On the persistence of strategic decision bias. In The Oxford handbook of organizational decision making, ed. G.P. Hodgkinson and W.H. Starbuck. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Geuna, A., A. Salter, and W.E. Steinmuller (eds.). 2003. Science and innovation: Rethinking the rationale for funding and governance. Cheltenham: Edward Elgar.

    Google Scholar 

  • Hall, B.H., and N. Rosenberg (eds.). 2010. Handbook of the economics of innovation. Burlington: Academic.

    Google Scholar 

  • Kerker, M. 1961. Science and the steam engine. Technology and Culture 2: 381–390.

    Article  Google Scholar 

  • Merton, R.K. 1973. The sociology of science: Theoretical and empirical investigations. Chicago: University of Chicago Press.

    Google Scholar 

  • Mina, A., R. Ramlogan, G. Tampubolon, and J.S. Metcalfe. 2007. Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge. Research Policy 36: 789–806.

    Article  Google Scholar 

  • Needham, J. 1962–3. The pre-natal history of the steam engine. Transactions of the Newcomen Society 35: 3–58.

    Google Scholar 

  • Nelson, R.R., and S.G. Winter. 1982. An evolutionary theory of economic change. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Nightingale, P. 1998. A cognitive model of innovation. Research Policy 27: 689–709.

    Article  Google Scholar 

  • Perez, C. 1985. Microelectronics, long waves and world structural change: New perspectives for developing countries. World Development 13: 441–463.

    Article  Google Scholar 

  • Perez, C. 2010. Technological revolutions and techno-economic paradigms. Cambridge Journal of Economics 34: 185–202.

    Article  Google Scholar 

  • Polanyi, M. 1962. Personal Knowledge: Towards a Post-Critical Philosophy. Chicago: University of Chicago Press.

    Google Scholar 

  • Possas, M.L., S. Salles-Filho, and J.M. Silveira. 1996. An evolutionary approach to technological innovation in agriculture: Some preliminary remarks. Research Policy 25: 933–945.

    Article  Google Scholar 

  • Soete, L. 1979. Firm size and inventive activity: The evidence reconsidered. European Economic Review 12: 319–340.

    Article  Google Scholar 

  • Starbuck, W., and J.M. Mezias. 1996. ‘Opening Pandora’s Box’: Studying the accuracy of managers’ perceptions. Journal of Organizational Behavior 17: 99–117.

    Article  Google Scholar 

  • Stoneman, P. 1995. Handbook on the economics of innovation and technical change. Oxford: Blackwell.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Dosi .

Editor information

Editors and Affiliations

Copyright information

© 2016 The Author(s)

About this entry

Cite this entry

Dosi, G., Nelson, R.R. (2016). Technological Paradigms and Technological Trajectories. In: Augier, M., Teece, D. (eds) The Palgrave Encyclopedia of Strategic Management. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-94848-2_733-1

Download citation

  • DOI: https://doi.org/10.1057/978-1-349-94848-2_733-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Online ISBN: 978-1-349-94848-2

  • eBook Packages: Springer Reference Business and ManagementReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics