Skip to main content

Advertisement

Log in

Materials innovation and electrical engineering in X-ray detection

  • Review Article
  • Published:

From Nature Reviews Electrical Engineering

View current issue Sign up to alerts

Abstract

X-ray detection is critical for applications in medical diagnosis, industrial inspection, security checks, scientific inquiry and space exploration. Recent advances in materials science, electronics, manufacturing and artificial intelligence have greatly propelled the field forward. In this Review we examine fundamental principles and recent breakthroughs in X-ray detection and imaging technologies, with a focus on the interplay between electrical engineering techniques and X-ray-responsive materials. We highlight two primary approaches: semiconductor-based direct detection and scintillator-based indirect detection. We then discuss innovations such as photon-counting detectors and heterojunction phototransistors and emphasize the critical contributions of electrical engineering in the development of these cutting-edge detectors. Subsequently, we provide an overview of X-ray detection applications, ranging from biomedical imaging and resonant X-ray techniques for material analysis to nanometre-resolution circuit imaging. Finally, the Review summarizes future research directions, which encompass 3D and 4D X-ray imaging sensors, multispectral X-ray imaging and artificial intelligence-assisted medical image diagnosis.

Key points

  • X-ray detection is critical for numerous modern applications and recent advances in materials science, electronics, manufacturing and artificial intelligence (AI) have greatly propelled this field forward.

  • The characteristics of semiconductor materials, such as carrier collection efficiency, dark current, ionization energy, resistance to X-ray damage and suitability for large-area fabrication, are key factors in direct X-ray detection.

  • Scintillators with high conversion efficiency and photosensors with high sensitivity are critical components of indirect detection flat panels, influencing their performance substantially.

  • X-ray detection and imaging play a crucial role across a wide spectrum of applications, including biomedical healthcare, industrial inspection and scientific research, as well as in the field of space exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Mechanism and equivalent electronic circuitry for typical X-ray detection methods.
Fig. 2: Electric models and signal transduction strategies in direct X-ray detection.
Fig. 3: Indirect X-ray detection: materials, engineering technology and electrical engineering.
Fig. 4: Versatile applications of X-ray detection and imaging.

Similar content being viewed by others

References

  1. Lai, P. T. et al. All-vacuum-deposited perovskite X-ray detector with a record-high self-powered sensitivity of 1.2 C Gy−1 cm−3. ACS Appl. Mater. Interfaces 14, 19795–19805 (2022).

    Article  Google Scholar 

  2. Nicholson, A. P. et al. Te/CdTe and Al/CdTe interfacial energy band alignment by atomistic modeling. ACS Appl. Mater. Interfaces 14, 29412–29421 (2022).

    Article  Google Scholar 

  3. Kasap, S. et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011).

    Article  Google Scholar 

  4. Hoheisel, M. Review of medical imaging with emphasis on X-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A. 563, 215–224 (2006).

    Article  Google Scholar 

  5. Du, X. et al. Chemical potential diagram guided rational tuning of electrical properties: a case study of CsPbBr3 for X-ray detection. Adv. Mater. 34, e2110252 (2022).

    Article  Google Scholar 

  6. Ghosh, J. et al. Surfactant-dependent bulk scale mechanochemical synthesis of CsPbBr3 nanocrystals for plastic scintillator-based X-ray imaging. ACS Appl. Nano Mater. 6, 14980–14990 (2023).

    Article  Google Scholar 

  7. Jana, A. et al. Perovskite: scintillators, direct detectors, and X-ray imagers. Mater. Today 55, 110–136 (2022).

    Article  Google Scholar 

  8. Li, Z. et al. Halide perovskites for high-performance X-ray detector. Mater. Today 48, 155–175 (2021).

    Article  Google Scholar 

  9. Wu, H., Ge, Y., Niu, G. & Tang, J. Metal halide perovskites for X-ray detection and imaging. Matter 4, 144–163 (2021). This article reviews the latest advancements in metal halide perovskite-based X-ray detection, with a focus on fundamental and performance metrics of both direct and indirect X-ray detection.

    Article  Google Scholar 

  10. Pan, W. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11, 726–732 (2017).

    Article  Google Scholar 

  11. Pang, J. et al. Vertical matrix perovskite X-ray detector for effective multi-energy discrimination. Light Sci. Appl. 11, 105 (2022).

    Article  Google Scholar 

  12. Ren, L., Zheng, B. & Liu, H. Tutorial on X-ray photon counting detector characterization. J. Xray Sci. Technol. 26, 1–28 (2018).

    Google Scholar 

  13. He, Y., Hadar, I. & Kanatzidis, M. G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photonics 16, 14–26 (2021).

    Article  Google Scholar 

  14. Huang, S. et al. Quantum recoil in free-electron interactions with atomic lattices. Nat. Photonics 17, 224–230 (2023).

    Article  Google Scholar 

  15. Huang, S. et al. Enhanced versatility of table-top X-rays from Van der Waals structures. Adv. Sci. 9, e2105401 (2022).

    Article  Google Scholar 

  16. Feranchuk, I. D., Ulyanenkov, A., Harada, J. & Spence, J. Parametric X-ray radiation and coherent bremsstrahlung from nonrelativistic electrons in crystals. Phys. Rev. E 62, 4225 (2000).

    Article  Google Scholar 

  17. Zhang, Z. et al. Highly sensitive direct conversion vacuum flat panel X‐ray detectors formed by Ga2O3–ZnO heterojunction cold cathode and ZnS target and their photoelectron multiplication mechanism. Adv. Mater. Interfaces 9, 2102268 (2022).

    Article  Google Scholar 

  18. Rowlands, J. A. Material change for X-ray detectors. Nature 550, 47–48 (2017).

    Article  Google Scholar 

  19. Huang, H. & Abbaszadeh, S. Recent developments of amorphous selenium-based X-ray detectors: a review. IEEE Sens. J. 20, 1694–1704 (2020).

    Article  Google Scholar 

  20. Ding, W. et al. Highly sensitive InGaAs/InAlAs X-ray avalanche photodiodes with fast time response. IEEE Trans. Nucl. Sci. 70, 76–81 (2023).

    Article  Google Scholar 

  21. Guo, L. et al. Fabrication and performance of micron thick CsI(Tl) films for X-ray imaging application. IEEE Trans. Nucl. Sci. 63, 1827–1831 (2016).

    Article  Google Scholar 

  22. Bahubalindruni, P. G. et al. Rail-to-rail timing signals generation using InGaZnO TFTs for flexible X-ray detector. IEEE J. Electron. Devices Soc. 8, 157–162 (2020).

    Article  Google Scholar 

  23. Li, Y. Z. et al. A monolithic amorphous-selenium/CMOS visible-light imager with sub-9-μm pixel pitch and extended full-well capacity. IEEE Sens. J. 21, 339–346 (2021).

    Article  Google Scholar 

  24. El-Falou, A., Camlica, A., Mohammadi, R., Levine, P. M. & Karim, K. S. A monolithic amorphous-selenium/CMOS single-photon-counting X-ray detector. IEEE Trans. Electron. Devices 68, 1746–1752 (2021).

    Article  Google Scholar 

  25. Kasap, S. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D Appl. Phys. 33, 2853 (2000).

    Article  Google Scholar 

  26. Zhao, W. & Rowlands, J. A. X‐ray imaging using amorphous selenium: feasibility of a flat panel self‐scanned detector for digital radiology. Med. Phys. 22, 1595–1604 (1995).

    Article  Google Scholar 

  27. Rowlands, J. A., Zhao, W., Blevis, I. M., Waechter, D. F. & Huang, Z. Flat-panel digital radiology with amorphous selenium and active-matrix readout. RadioGraphics 17, 753–760 (1997).

    Article  Google Scholar 

  28. Yaffe, M. & Rowlands, J. X-ray detectors for digital radiography. Phys. Med. Biol. 42, 1 (1997).

    Article  Google Scholar 

  29. Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017).

    Article  Google Scholar 

  30. Afzal, A. M. et al. Highly efficient self-powered perovskite photodiode with an electron-blocking hole-transport NiOx layer. Sci. Rep. 11, 169 (2021).

    Article  Google Scholar 

  31. Zhao, J. et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat. Photonics 14, 612–617 (2020).

    Article  Google Scholar 

  32. Zhao, L. et al. Surface-defect-passivation-enabled near-unity charge collection efficiency in bromide-based perovskite gamma-ray spectrum devices. Nat. Photonics 18, 250–257 (2024).

    Article  Google Scholar 

  33. Zhou, Y. et al. Heterojunction structures for reduced noise in large-area and sensitive perovskite X-ray detectors. Sci. Adv. 7, eabg6716 (2021).

    Article  Google Scholar 

  34. Zhao, H. et al. Flexible perovskite X‐ray detectors through interfacial modification with perylene diimide. Adv. Opt. Mater. 11, 2202668 (2023).

    Article  Google Scholar 

  35. Zhou, Y. et al. Self-powered perovskite photon-counting detectors. Nature 616, 712–718 (2023). This article demonstrates a self-powered polycrystalline perovskite X-ray detector that utilizes the unique defect properties of perovskites for photon counting.

    Article  Google Scholar 

  36. Kabir, M. Z. & Kasap, S. O. Charge collection and absorption-limited sensitivity of X-ray photoconductors: applications to a-Se and HgI2. Appl. Phys. Lett. 80, 1–4 (2002).

    Article  Google Scholar 

  37. Kim, H. K. Analytical model for incomplete signal generation in semiconductor detectors. Appl. Phys. Lett. 88, 1–4 (2006).

    Google Scholar 

  38. Nemirovsky, Y. Statistical modeling of charge collection in semiconductor gamma-ray spectrometers. J. Appl. Phys. 85, 8–15 (1999).

    Article  Google Scholar 

  39. Lecoq, P., Korzhik, M. & Vasiliev, A. Can transient phenomena help improving time resolution in scintillators? IEEE Trans. Nucl. Sci. 61, 229–234 (2014).

    Article  Google Scholar 

  40. Mainprize, J. G., Hunt, D. C. & Yaffe, M. J. Direct conversion detectors: the effect of incomplete charge collection on detective quantum efficiency. Med. Phys. 29, 976–990 (2002).

    Article  Google Scholar 

  41. Schieber, M. et al. Thick films of X-ray polycrystalline mercuric iodide detectors. J. Cryst. Growth 225, 118–123 (2001).

    Article  Google Scholar 

  42. Schieber, M. & Zuck, A. Advances in physical vapor deposited polycrystalline-HgI2 X-ray imaging detectors. J. Optoelectron. Adv. Mater. 5, 1299–1303 (2003).

    Google Scholar 

  43. Sellin, P. J., Davies, A. W., Lohstroh, A., Ozsan, M. E. & Parkin, J. Drift mobility and mobility-lifetime products in CdTe:Cl grown by the travelling heater method. IEEE Trans. Nucl. Sci. 52, 3074–3078 (2005).

    Article  Google Scholar 

  44. Kargar, A., Ariesanti, E. & McGregor, D. S. A comparison between spectroscopic performance of HgI2 and CdZnTe Frisch collar detectors. Nucl. Technol. 175, 131–137 (2017).

    Article  Google Scholar 

  45. Kasap, S. O. & Rowlands, J. A. Photoconductor selection for digital flat panel X-ray image detectors based on the dark current. J. Vac. Sci. Technol. Vac. Surf. Films 18, 615–620 (2000).

    Article  Google Scholar 

  46. Zhuang, R. et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics 13, 602–608 (2019).

    Article  Google Scholar 

  47. Lang, F. et al. Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater. 30, 1702905 (2018).

    Article  Google Scholar 

  48. Wei, H. & Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10, 1066 (2019).

    Article  Google Scholar 

  49. Abbene, L. & Iniewski, K.K. High-Z Materials for X-Ray Detection: Material Properties and Characterization Techniques (Springer Nature, 2023). This book covers a wide range of topics, including in-depth analysis of the development and utilization of high-Z materials, as well as their applications in X-ray detection.

  50. Šagátová, A. et al. Radiation hardness of GaAs sensors against gamma-rays, neutrons and electrons. Appl. Surf. Sci. 395, 66–71 (2017).

    Article  Google Scholar 

  51. Yang, S. et al. Organohalide lead perovskites: more stable than glass under gamma-ray radiation. Adv. Mater. 31, e1805547 (2019).

    Article  Google Scholar 

  52. Rocha, J. G., Minas, G. & Lanceros-Mendez, S. Pixel readout circuit for X-ray imagers. IEEE Sens. J. 10, 1740–1745 (2010).

    Article  Google Scholar 

  53. Bigas, M., Cabruja, E., Forest, J. & Salvi, J. Review of CMOS image sensors. Microelectron. J. 37, 433–451 (2006).

    Article  Google Scholar 

  54. Sannino, M. et al. A high dynamic range, 1.9 Mpixel CMOS image sensor for X-ray imaging with in-pixel charge binning and column parallel ADC. In Proc. Int. Image Sensor Workshop https://doi.org/10.60928/oev0-w5tg (2019).

  55. Greenberg, J. X-Ray Diffraction Imaging: Technology and Applications (CRC, 2018). This book provides a comprehensive discussion of the fundamental physics, architectures and applications of X-ray diffraction imaging, suitable for both beginners and experts.

  56. Yu, H., Chen, T., Han, Z., Fan, J. & Pei, Q. Liquid scintillators loaded with up to 40 weight percent cesium lead bromide quantum dots for gamma scintillation. ACS Appl. Nano Mater. 5, 14572–14581 (2022).

    Article  Google Scholar 

  57. Hou, B. et al. An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nat. Electron. 5, 682–693 (2022).

    Article  Google Scholar 

  58. Liang, L. et al. Controlling persistent luminescence in nanocrystalline phosphors. Nat. Mater. 22, 289–304 (2023).

    Article  Google Scholar 

  59. Wang, X. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photonics 15, 187–192 (2021).

    Article  Google Scholar 

  60. Liu, J. et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 31, e1901644 (2019).

    Article  Google Scholar 

  61. Hong, Z., Chen, Z., Chen, Q. & Yang, H. Advancing X-ray luminescence for imaging, biosensing, and theragnostics. Acc. Chem. Res. 56, 37–51 (2023).

    Article  Google Scholar 

  62. Zeng, Z. et al. Multimodal luminescent Yb3+/Er3+/Bi3+-doped perovskite single crystals for X-ray detection and anti-counterfeiting. Adv. Mater. 32, e2004506 (2020).

    Article  Google Scholar 

  63. Chen, S. et al. Intense broadband radioluminescence from an Mn2+-doped aluminoborate glass scintillator. J. Mater. Chem. C. 10, 10382–10388 (2022).

    Article  Google Scholar 

  64. Badel, X. et al. Performance of scintillating waveguides for CCD-based X-ray detectors. IEEE Trans. Nucl. Sci. 53, 3–8 (2006).

    Article  Google Scholar 

  65. Heo, J. H. et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 30, e1801743 (2018).

    Article  Google Scholar 

  66. Zhou, F. et al. Halide perovskite, a potential scintillator for X‐ray detection. Small Methods 4, 2000506 (2020).

    Article  Google Scholar 

  67. Ljungberg, M. Handbook of Nuclear Medicine and Molecular Imaging for Physicists: Radiopharmaceuticals and Clinical Applications Vol. III (CRC, 2022).

  68. Gektin, A. & Korzhik, M. Inorganic Scintillators for Detector Systems (Springer, 2017). This book describes significant advancements in both traditional and novel engineering and production of scintillation materials, including ceramics and nanocrystals.

  69. Wu, H. et al. One-dimensional scintillator film with benign grain boundaries for high-resolution and fast X-ray imaging. Sci. Adv. 9, eadh1789 (2023).

    Article  Google Scholar 

  70. Zhu, W. et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light Sci. Appl. 9, 112 (2020).

    Article  Google Scholar 

  71. Wu, H. Y., Kuan, Y. H., Yu, G., Sun, Y. S. & Hsu, J. C. Photoluminescence of cesium-doped sodium iodide films irradiated by UV LED. Nanomaterials 13, 2747 (2023).

    Article  Google Scholar 

  72. Kumar, V. & Luo, Z. A review on X-ray excited emission decay dynamics in inorganic scintillator materials. Photonics 8, 1–27 (2021).

    Article  Google Scholar 

  73. Yang, F., Zhang, L. & Zhu, R.-Y. Gamma-ray induced radiation damage up to 340 Mrad in various scintillation crystals. IEEE Trans. Nucl. Sci. 63, 612–619 (2016).

    Article  Google Scholar 

  74. Zaffalon, M. L. et al. Extreme γ-ray radiation hardness and high scintillation yield in perovskite nanocrystals. Nat. Photonics 16, 860–868 (2022).

    Article  Google Scholar 

  75. Ma, W. et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nat. Mater. 21, 210–216 (2022).

    Article  Google Scholar 

  76. Ou, X. et al. High-resolution X-ray luminescence extension imaging. Nature 590, 410–415 (2021).

    Article  Google Scholar 

  77. Yi, L., Hou, B., Zhao, H., Tan, H. Q. & Liu, X. A double-tapered fibre array for pixel-dense gamma-ray imaging. Nat. Photonics 17, 494–500 (2023).

    Article  Google Scholar 

  78. Lin, C.-H. et al. Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability. Nano Energy 73, 104801 (2020).

    Article  Google Scholar 

  79. Svenonius, O., Sahlholm, A., Wiklund, P. & Linnros, J. Performance of an X-ray imaging detector based on a structured scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 607, 138–140 (2009).

    Article  Google Scholar 

  80. Ohashi, Y., Yasui, N., Yokota, Y., Yoshikawa, A. & Den, T. Submicron-diameter phase-separated scintillator fibers for high-resolution X-ray imaging. Appl. Phys. Lett. 102, 1–5 (2013).

    Article  Google Scholar 

  81. Zhao, X. et al. Embedding Cs3Cu2I5 scintillators into anodic aluminum oxide matrix for high‐resolution X‐ray imaging. Adv. Opt. Mater. 9, 2101194 (2021).

    Article  Google Scholar 

  82. Pan, L., He, Y., Klepov, V. V., De Siena, M. C. & Kanatzidis, M. G. Perovskite CsPbBr3 single crystal detector for high flux X-ray photon counting. IEEE Trans. Med. Imaging 41, 3053–3061 (2022).

    Article  Google Scholar 

  83. Huber, M.C., Pauluhn, A. & Timothy, J.G. Observing Photons in Space: A Guide to Experimental Space Astronomy 1–19 (Springer, 2013). This book discusses the requirements and examples of X-ray and gamma-ray detectors in astronomical space instruments related to the space environment.

  84. Kataoka, J. et al. Recent progress of MPPC-based scintillation detectors in high precision X-ray and gamma-ray imaging. Nucl. Instrum. Methods Phys. Res. Sect. A 784, 248–254 (2015).

    Article  Google Scholar 

  85. Chen, C. et al. Integrating poly-silicon and InGaZnO thin-film transistors for CMOS inverters. IEEE Trans. Electron. Devices 64, 3668–3671 (2017).

    Article  Google Scholar 

  86. Fenter, P., Park, C., Zhang, Z. & Wang, S. Observation of subnanometre-high surface topography with X-ray reflection phase-contrast microscopy. Nat. Phys. 2, 700–704 (2006).

    Article  Google Scholar 

  87. Pfeiffer, F., Weitkamp, T., Bunk, O. & David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys. 2, 258–261 (2006).

    Article  Google Scholar 

  88. Yi, L., Hou, B., Zhao, H. & Liu, X. X-ray-to-visible light-field detection through pixelated colour conversion. Nature 618, 281–286 (2023). This article uses an array of multicolour nanoscintillators to convert the incident X-ray angles into pixelated colour output with a resolution of 0.0018°.

    Article  Google Scholar 

  89. Ran, P. et al. Multispectral large-panel X-ray imaging enabled by stacked metal halide scintillators. Adv. Mater. 34, e2205458 (2022).

    Article  Google Scholar 

  90. Kang, I. et al. Attentional ptycho-tomography (APT) for three-dimensional nanoscale X-ray imaging with minimal data acquisition and computation time. Light Sci. Appl. 12, 131 (2023).

    Article  Google Scholar 

  91. Azizi, S. et al. Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging. Nat. Biomed. Eng. 7, 756–779 (2023).

    Article  Google Scholar 

  92. Gao, C. et al. Synthetic data accelerates the development of generalizable learning-based algorithms for X-ray image analysis. Nat. Mach. Intell. 5, 294–308 (2023).

    Article  Google Scholar 

  93. Huang, Y. et al. Detecting lithium plating dynamics in a solid-state battery with operando X-ray computed tomography using machine learning. npj Comput. Mater. 9, 93 (2023).

    Article  Google Scholar 

  94. Wang, G. et al. A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images. Nat. Biomed. Eng. 5, 509–521 (2021).

    Article  Google Scholar 

  95. Hou, B. et al. A swallowable X-ray dosimeter for the real-time monitoring of radiotherapy. Nat. Biomed. Eng. 7, 1242–1251 (2023).

    Article  Google Scholar 

  96. Granfors, P. R. & Albagli, D. Scintillator‐based flat‐panel X‐ray imaging detectors. J. Soc. Inf. Disp. 17, 535–542 (2012).

    Article  Google Scholar 

  97. Beyer, G. P. et al. An implantable MOSFET dosimeter for the measurement of radiation dose in tissue during cancer therapy. IEEE Sens. J. 8, 38–51 (2008).

    Article  Google Scholar 

  98. Ruiz-Garcia, I. et al. Commercial photodiodes and phototransistors as dosimeters of photon beams for radiotherapy. Med. Phys. 48, 5440–5447 (2021).

    Article  Google Scholar 

  99. Lu, L., Sun, M., Lu, Q., Wu, T. & Huang, B. High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy. Nano Energy 79, 105437 (2021).

    Article  Google Scholar 

  100. Rosenfeld, A. B. et al. Semiconductor dosimetry in modern external-beam radiation therapy. Phys. Med. Biol. 65, 16TR01 (2020).

    Article  Google Scholar 

  101. Whiteley, S. J., Heremans, F. J., Wolfowicz, G., Awschalom, D. D. & Holt, M. V. Correlating dynamic strain and photoluminescence of solid-state defects with stroboscopic X-ray diffraction microscopy. Nat. Commun. 10, 3386 (2019).

    Article  Google Scholar 

  102. Holler, M. et al. Three-dimensional imaging of integrated circuits with macro- to nanoscale zoom. Nat. Electron. 2, 464–470 (2019).

    Article  Google Scholar 

  103. Ziesche, R. F. et al. 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique. Nat. Commun. 11, 777 (2020).

    Article  Google Scholar 

  104. He, Y. et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics 15, 36–42 (2020).

    Article  Google Scholar 

  105. Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photonics 10, 585–589 (2016).

    Article  Google Scholar 

  106. Iniewski, K.K. Advanced X-Ray Detector Technologies (Springer, 2022). This book offers in-depth analysis of X-ray detection and related electronic devices, along with a wide range of applications.

  107. Nyby, C. et al. Visualizing energy transfer at buried interfaces in layered materials using picosecond X‐rays. Adv. Funct. Mater. 30, 2002282 (2020).

    Article  Google Scholar 

  108. Bein, B. et al. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices. Nat. Commun. 6, 10136 (2015).

    Article  Google Scholar 

  109. Jiang, Z., Strzalka, J. W., Walko, D. A. & Wang, J. Reconstruction of evolving nanostructures in ultrathin films with X-ray waveguide fluorescence holography. Nat. Commun. 11, 3197 (2020).

    Article  Google Scholar 

  110. Barty, A. et al. Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat. Photonics 2, 415–419 (2008).

    Article  Google Scholar 

  111. Ju, G. et al. In situ microbeam surface X-ray scattering reveals alternating step kinetics during crystal growth. Nat. Commun. 12, 1721 (2021). This article demonstrates an in situ X-ray scattering system that can determine whether A or B steps exhibit faster kinetics under specific growth conditions.

    Article  Google Scholar 

  112. Hejral, U., Muller, P., Balmes, O., Pontoni, D. & Stierle, A. Tracking the shape-dependent sintering of platinum–rhodium model catalysts under operando conditions. Nat. Commun. 7, 10964 (2016).

    Article  Google Scholar 

  113. Leveille, C. et al. Ultrafast time-evolution of chiral Néel magnetic domain walls probed by circular dichroism in X-ray resonant magnetic scattering. Nat. Commun. 13, 1412 (2022).

    Article  Google Scholar 

  114. Ong, B. L. et al. Anomalous ferromagnetism of quasiparticle doped holes in cuprate heterostructures revealed using resonant soft X-ray magnetic scattering. Nat. Commun. 13, 4639 (2022).

    Article  Google Scholar 

  115. Carr, A. J. Resonant anomalous X-ray reflectivity for revealing ion distributions near electrodes. Nat. Rev. Phys. 4, 743–743 (2022).

    Article  Google Scholar 

  116. Ajayi, T. M. et al. Characterization of just one atom using synchrotron X-rays. Nature 618, 69–73 (2023).

    Article  Google Scholar 

  117. Bavdaz, M., Peacock, A. & Owens, A. Future space applications of compound semiconductor X-ray detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 458, 123–131 (2001).

    Article  Google Scholar 

  118. Merloni, A., Nandra, K. & Predehl, P. eROSITA’s X-ray eyes on the Universe. Nat. Astron. 4, 634–636 (2020).

    Article  Google Scholar 

  119. Kalemci, E. Summary of the past, present and future of the X-ray astronomy. Eur. Phys. J. Plus 133, 407 (2018).

    Article  Google Scholar 

  120. Hansson, C. C. T., Owens, A. & Biezen, J.v.d. X-ray, γ-ray and neutron detector development for future space instrumentation. Acta Astronaut. 93, 121–128 (2014).

    Article  Google Scholar 

  121. Ogino, N. et al. Performance verification of next-generation Si CMOS soft X-ray detector for space applications. Nucl. Instrum. Methods Phys. Res. Sect. A 987, 164843 (2021).

    Article  Google Scholar 

  122. Tu, Y. et al. Perovskite solar cells for space applications: progress and challenges. Adv. Mater. 33, e2006545 (2021).

    Article  Google Scholar 

  123. Zhu, Z. et al. Improved light extraction of LYSO scintillator by the photonic structure from a layer of anodized aluminum oxide. Nucl. Instrum. Methods Phys. Res. Sect. A 786, 1–4 (2015).

    Article  Google Scholar 

  124. Iltis, A. et al. Impact on timing and light extraction of a photonic crystal as measured on a half patterned LYSO crystal: implications for time of flight PET imaging. J. Instrum. 14, P06036–P06036 (2019).

    Article  Google Scholar 

  125. Pots, R. H. et al. Improving light output and coincidence time resolution of scintillating crystals using nanoimprinted photonic crystal slabs. Nucl. Instrum. Methods Phys. Res. Sect. A 940, 254–261 (2019).

    Article  Google Scholar 

  126. Kurman, Y., Shultzman, A., Segal, O., Pick, A. & Kaminer, I. Photonic-crystal scintillators: molding the flow of light to enhance X-ray and gamma-ray detection. Phys. Rev. Lett. 125, 040801 (2020).

    Article  Google Scholar 

  127. Ye, W., Bizarri, G., Birowosuto, M. D. & Wong, L. J. Enhancing large-area scintillator detection with photonic crystal cavities. ACS Photonics 9, 3917–3925 (2022).

    Article  Google Scholar 

  128. Shultzman, A., Segal, O., Kurman, Y., Roques‐Carmes, C. & Kaminer, I. Enhanced imaging using inverse design of nanophotonic scintillators. Adv. Opt. Mater. 11, 2202318 (2023).

    Article  Google Scholar 

  129. Torrisi, L. et al. Single crystal silicon carbide detector of emitted ions and soft X-rays from power laser-generated plasmas. J. Appl. Phys. 105, 1–8 (2009).

    Article  Google Scholar 

  130. Luo, Z., Moch, J. G., Johnson, S. S. & Chen, C. C. A review on X-ray detection using nanomaterials. Curr. Nanosci. 13, 364–372 (2017).

    Article  Google Scholar 

  131. Guo, J. et al. Morphology of X-ray detector Cs2TeI6 perovskite thick films grown by electrospray method. J. Mater. Chem. C. 7, 8712–8719 (2019).

    Article  Google Scholar 

  132. Kauppinen, M. et al. Characterization of seamless CdTe photon counting X-ray detector. IEEE Trans. Instrum. Meas. 70, 1–11 (2021).

    Article  Google Scholar 

  133. Ivanov, Y. M. et al. The possibilities of using semi‐insulating CdTe crystals as detecting material for X‐ray imaging radiography. Phys. Status Solidi 3, 840–844 (2003).

    Article  Google Scholar 

  134. Mirzaei, A., Huh, J.-S., Kim, S. S. & Kim, H. W. Room temperature hard radiation detectors based on solid state compound semiconductors: an overview. Electron. Mater. Lett. 14, 261–287 (2018).

    Article  Google Scholar 

  135. Wu, S. et al. A photoconductive X-ray detector with a high figure of merit based on an open-framework chalcogenide semiconductor. Angew. Chem. Int. Ed. Engl. 59, 18605–18610 (2020).

    Article  Google Scholar 

  136. Thirimanne, H. M. et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nat. Commun. 9, 2926 (2018).

    Article  Google Scholar 

  137. Matt, G. J. et al. Sensitive direct converting X‐ray detectors utilizing crystalline CsPbBr3 perovskite films fabricated via scalable melt processing. Adv. Mater. Interfaces 7, 1901575 (2020).

    Article  Google Scholar 

  138. Almora, O. et al. Surface versus bulk currents and ionic space-charge effects in CsPbBr3 single crystals. J. Phys. Chem. Lett. 13, 3824–3830 (2022).

    Article  Google Scholar 

  139. Xu, Q. et al. CsPbBr3 single crystal X-ray detector with Schottky barrier for X-ray imaging application. ACS Appl. Electron. Mater. 2, 879–884 (2020).

    Article  Google Scholar 

  140. Gou, Z. et al. Self‐powered X‐ray detector based on all‐inorganic perovskite thick film with high sensitivity under low dose rate. Phys. Status Solidi Rapid Res. Lett. 13, 1900094 (2019).

    Article  Google Scholar 

  141. Zhang, B. B. et al. High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3. J. Phys. Chem. Lett. 11, 432–437 (2020).

    Article  Google Scholar 

  142. Yin, L. et al. Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X‐ray detection. Adv. Opt. Mater. 7, 1900491 (2019).

    Article  Google Scholar 

  143. Xia, M. et al. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X‐ray detectors with low detection limit and high stability. Adv. Funct. Mater. 30, 1910648 (2020).

    Article  Google Scholar 

  144. Tie, S. et al. Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit. Adv. Mater. 32, e2001981 (2020).

    Article  Google Scholar 

  145. Gao, Y. et al. Ultrathin and ultrasensitive direct X-ray detector based on heterojunction phototransistors. Adv. Mater. 33, e2101717 (2021).

    Article  Google Scholar 

  146. Temino, I. et al. Morphology and mobility as tools to control and unprecedentedly enhance X-ray sensitivity in organic thin-films. Nat. Commun. 11, 2136 (2020).

    Article  Google Scholar 

  147. Wang, Y. et al. Direct radiation detection by a semiconductive metal-organic framework. J. Am. Chem. Soc. 141, 8030–8034 (2019).

    Article  Google Scholar 

  148. He, Y. et al. Controlling the vapor transport crystal growth of Hg3Se2I2 hard radiation detector using organic polymer. Cryst. Growth Des. 19, 2074–2080 (2019).

    Article  Google Scholar 

  149. Moszynski, M., Kapusta, M., Mayhugh, M., Wolski, D. & Flyckt, S. Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 44, 1052–1061 (1997).

    Article  Google Scholar 

  150. Miyata, E., Miki, M., Tawa, N. & Miyaguchi, K. X-ray responsivities of direct-scintillator-deposited charge-coupled device. Jpn J. Appl. Phys. 44, 1476 (2005).

    Article  Google Scholar 

  151. Auffray, E. et al. Irradiation effects on Gd3Al2Ga3O12 scintillators prospective for application in harsh irradiation environments. Radiat. Phys. Chem. 164, 108365 (2019).

    Article  Google Scholar 

  152. Li, W. et al. Preparation and characterization of multilayer Gd2O2S:Tb phosphor screen for X‐ray detection application. Int. J. Appl. Ceram. Technol. 17, 1440–1444 (2019).

    Article  Google Scholar 

  153. Moszyński, M., Ludziejewski, T., Wolski, D., Klamra, W. & Norlin, L. Properties of the YAG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 345, 461–467 (1994).

    Article  Google Scholar 

  154. Drozdowski, W. et al. CeBr3 scintillator development for possible use in space missions. IEEE Trans. Nucl. Sci. 55, 1391–1396 (2008).

    Article  Google Scholar 

  155. Li, Y. et al. Scintillation properties of perovskite single crystals. J. Phys. Chem. C 123, 17449–17453 (2019).

    Article  Google Scholar 

  156. Xu, Q. et al. Bulk organic-inorganic methylammonium lead halide perovskite single crystals for indirect gamma ray detection. ACS Appl. Mater. Interfaces 11, 47485–47490 (2019).

    Article  Google Scholar 

  157. Zhang, Y. et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 13, 2520–2525 (2019).

    Article  Google Scholar 

  158. Yang, B. et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Adv. Mater. 31, e1904711 (2019).

    Article  Google Scholar 

  159. Yang, K., Zhuravleva, M. & Melcher, C. L. Crystal growth and characterization of CsSr1–xEuxI3 high light yield scintillators. Phys. Status Solidi Rapid Res. Lett. 5, 43–45 (2011).

    Article  Google Scholar 

  160. Stand, L. et al. Characterization of mixed halide scintillators: CsSrBrI2:Eu, CsCaBrI2:Eu and CsSrClBr2:Eu. J. Lumin. 207, 70–77 (2019).

    Article  Google Scholar 

  161. Rutstrom, D., Stand, L., Koschan, M., Melcher, C. L. & Zhuravleva, M. Europium concentration effects on the scintillation properties of Cs4SrI6:Eu and Cs4CaI6:Eu single crystals for use in gamma spectroscopy. J. Lumin. 216, 116740 (2019).

    Article  Google Scholar 

  162. Loyd, M. et al. Crystal structure and thermal expansion of CsCaI3:Eu and CsSrBr3:Eu scintillators. J. Cryst. Growth 481, 35–39 (2018).

    Article  Google Scholar 

  163. Lü, Z.-W. et al. New flexible CsPbBr3-based scintillator for X-ray tomography. Nucl. Sci. Tech. 33, 1–11 (2022).

    Article  Google Scholar 

  164. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  Google Scholar 

  165. Rossi, C. et al. Exploiting the transformative features of metal halides for the synthesis of CsPbBr3@SiO2 core–shell nanocrystals. Chem. Mater. 34, 405–413 (2021).

    Article  Google Scholar 

  166. Cao, F. et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano 14, 5183–5193 (2020).

    Article  Google Scholar 

  167. Lian, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 7, 2000195 (2020).

    Article  Google Scholar 

  168. Gan, N. et al. Organic phosphorescent scintillation from copolymers by X-ray irradiation. Nat. Commun. 13, 3995 (2022).

    Article  Google Scholar 

  169. Fecková, M. et al. Structural tailoring of p-terphenyl scaffold: towards advanced plastic scintillator. Dye. Pigment. 219, 111593 (2023).

    Article  Google Scholar 

  170. Yanagida, T., Watanabe, K. & Fujimoto, Y. Comparative study of neutron and gamma-ray pulse shape discrimination of anthracene, stilbene, and p-terphenyl. Nucl. Instrum. Methods Phys. Res. Sect. A 784, 111–114 (2015).

    Article  Google Scholar 

  171. Cameron, R. J. et al. Fogging in polyvinyl toluene scintillators. IEEE Trans. Nucl. Sci. 62, 368–371 (2015).

    Article  Google Scholar 

  172. Chuirazzi, W. C. et al. Evaluation of polyvinyl toluene scintillators for fast neutron imaging. J. Radioanal. Nucl. Chem. 318, 543–551 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Science, Technology and Research (grant no. A1983c0038), the National Research Foundation and the Prime Minister’s Office of Singapore under its Investigatorship Programme (award no. NRF-NRFI05-2019-0003). L.J.W. acknowledges support from the Ministry of Education, Singapore under its AcRF Tier 2 Programme (award no. MOE-T2EP50222-0012) and the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant no. 21H01743).

Author information

Authors and Affiliations

Authors

Contributions

B.H., L.Y. and Q.C. researched data for the article. X.L., B.H., L.Y., L.J.W., Q.C., P.S. and H.-T.S. substantially contributed to discussion of the content. B.H. and L.Y. wrote the manuscript. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Xiaogang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Saw-Wai Hla, Zhiwen Jin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, B., Chen, Q., Yi, L. et al. Materials innovation and electrical engineering in X-ray detection. Nat Rev Electr Eng (2024). https://doi.org/10.1038/s44287-024-00086-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44287-024-00086-x

  • Springer Nature Limited

Navigation