Skip to main content

Advertisement

Log in

Tuning extracellular fluid viscosity to enhance transfection efficiency

  • Article
  • Published:

From Nature Chemical Engineering

View current issue Submit your manuscript

Abstract

Gene therapies and cellular programming rely on effective cell transfection. Despite continuous advancements in carrier development and transfection techniques to enhance efficiency, the biophysical parameter of extracellular fluid viscosity has been largely overlooked. Here we report a substantial impact of culture media viscosity on transfection efficiency of several delivery vehicles, including lipid nanoparticles, polyplexes, adeno-associated vectors and lentiviral vectors across a range of cell types. We observed substantially increased transfection efficiencies for lipid nanoparticles and polyplexes when the media viscosity matched that of biological fluids (2.0–4.0 centipoise (cP)). This enhancement correlates with higher levels of cellular uptake and improved endosomal escape. Moreover, cells cultured in optimized viscosity conditions exhibit a different profile of uptake pathways compared with those cultured at the standard viscosity of 0.8 cP. This discovery highlights the critical role of media viscosity in the transfection process and provides an additional method to optimize gene delivery and cell programming processes, potentially reducing production costs and increasing the accessibility of gene and cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Extracellular-fluid-viscosity-dependent transfection efficiency mediated by mRNA LNPs.
Fig. 2: Media-viscosity-dependent transfection efficiency mediated by mLuc LNPs across various cell types.
Fig. 3: Effect of media viscosity on cellular uptake and endosomal escape efficiency of mRNA LNPs.
Fig. 4: Cell uptake pathways and actin remodeling/dynamics, NHE1-mediated swelling and RhoA-based contractility on endocytosis of mRNA LNPs at different viscosity levels in B16-F10 cells.
Fig. 5: Transfection/transduction efficiency of different nucleic acids and vehicles on HEK293T cells under different media viscosity conditions.
Fig. 6: Viscosity-enhanced transfection/transduction of viral production in HEK293F suspension cells and human PBMCs.

Similar content being viewed by others

Data availability

The main data supporting the results of this study are available within the Article and its Supplementary Information. The raw and analyzed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Zu, H. & Gao, D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J. 23, 78 (2021).

    Article  PubMed  Google Scholar 

  2. Butt, M. H. et al. Appraisal for the potential of viral and nonviral vectors in gene therapy: a review. Genes 13, 1370 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fan, G. et al. Bio-inspired polymer envelopes around adenoviral vectors to reduce immunogenicity and improve in vivo kinetics. Acta Biomater. 30, 94–105 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Zhu, Y. et al. Optimization of lipid nanoparticles for gene editing of the liver via intraduodenal delivery. Biomaterials 308, 122559 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Gonçalves, G. A. R. & Paiva, R. d. M. A. Gene therapy: advances, challenges and perspectives. Einstein (São Paulo) 15, 369–375 (2017).

    Article  PubMed  Google Scholar 

  6. Tian, Y., Hu, D., Li, Y. & Yang, L. Development of therapeutic vaccines for the treatment of diseases. Mol. Biomed. 3, 40 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kacherovsky, N. et al. Traceless aptamer-mediated isolation of CD8+ T cells for chimeric antigen receptor T-cell therapy. Nat. Biomed. Eng. 3, 783–795 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu, Y. et al. Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity. Nat. Biomed. Eng. 8, 544–560 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Y. et al. Close the cancer-immunity cycle by integrating lipid nanoparticle-mRNA formulations and dendritic cell therapy. Nat. Nanotechnol. 18, 1364–1374 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Billingsley, M. M. et al. In vivo mRNA CAR T cell engineering via targeted ionizable lipid nanoparticles with extrahepatic tropism. Small 20, e2304378 (2024).

    Article  PubMed  Google Scholar 

  11. Zhao, Y. et al. Polymetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Comm. 7, 11822 (2016).

    Article  Google Scholar 

  12. Xiong, M. P. et al. Poly(aspartate-g-PEI800), a polyethylenimine analogue of low toxicity and high transfection efficiency for gene delivery. Biomaterials 28, 4889–4900 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, G. P. et al. Analysis of lentiviral vector integration in HIV+ study subjects receiving autologous infusions of gene modified CD4+ T cells. Mol. Ther. 17, 844–850 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ghassemi, S. et al. Rapid manufacturing of non-activated potent CAR T cells. Nat. Biomed. Eng. 6, 118–128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pekrun, K. et al. Using a barcoded AAV capsid library to select for clinically relevant gene therapy vectors. JCI Insight 4, e131610 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Metzloff, A. E. et al. Antigen presenting cell mimetic lipid nanoparticles for rapid mRNA CAR T cell cancer immunotherapy. Adv. Mater. 36, e2313226 (2024).

    Article  PubMed  Google Scholar 

  18. Nemir, S. & West, J. L. Synthetic materials in the study of cell response to substrate rigidity. Ann. Biomed. Eng. 38, 2–20 (2010).

    Article  PubMed  Google Scholar 

  19. Yankaskas, C. L. et al. The fluid shear stress sensor TRPM7 regulates tumor cell intravasation. Sci. Adv. 7, eabh3457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao, R. et al. Cell sensing and decision-making in confinement: the role of TRPM7 in a tug of war between hydraulic pressure and cross-sectional area. Sci. Adv. 5, eaaw7243 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maity, D. et al. Extracellular hydraulic resistance enhances cell migration. Adv. Sci. 9, e2200927 (2022).

    Article  Google Scholar 

  22. Bera, K. et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature 611, 365–373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, Y. et al. Polarized NHE1 and SWELL1 regulate migration direction, efficiency and metastasis. Nat. Comm. 13, 6128 (2022).

    Article  CAS  Google Scholar 

  24. Goult, B. T., von Essen, M. & Hytönen, V. P. The mechanical cell—the role of force dependencies in synchronising protein interaction networks. J. Cell Sci. 135, jcs259769 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun, L., Suo, C., Li, S.-T., Zhang, H. & Gao, P. Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg effect. Biochim. Biophys. Acta, Rev. Cancer 1870, 51–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603–612 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Parton, R. G. et al. Caveolae: the FAQs. Traffic 21, 181–185 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Donahue, N. D., Acar, H. & Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 143, 68–96 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Pegu, A. et al. Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science 373, 1372–1377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, L. et al. Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability. npj Vaccines 8, 156 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pittman, M. et al. Membrane ruffling is a mechanosensor of extracellular fluid viscosity. Nat. Phys. 18, 1112–1121 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ryter, A. Relationship between ultrastructure and specific functions of macrophages. Comp. Immunol. Microbiol. Infect. Dis. 8, 119–133 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Hu, Y. et al. Size-controlled and shelf-stable DNA particles for production of lentiviral vectors. Nano Lett. 21, 5697–5705 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rui, Y. et al. High-throughput and high-content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA. Sci. Adv. 8, eabk2855 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, Y. et al. Albumin-biomineralized nanoparticles to synergize phototherapy and immunotherapy against melanoma. J. Control. Rel. 322, 300–311 (2020).

    Article  CAS  Google Scholar 

  37. Nyamay’Antu, A., Kédinger, V. & Erbacher, P. Simplifying the efficient clinical-grade production of viruses. Genet. Eng. Biotechnol. News 37, 24–25 (2017).

    Article  Google Scholar 

  38. Meng, M. & Wu, Y.-C. Combination of AAV-CCL19 and GPC3 CAR-T cells in the treatment of hepatocellular carcinoma. J. Immunol. Res. 2021, 1782728 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moço, P. D., Farnós, O., Sharon, D. & Kamen, A. A. Targeted delivery of chimeric antigen receptor into T cells via CRISPR-mediated homology-directed repair with a dual-AAV6 transduction system. Curr. Issues Mol. Biol. 45, 7705–7720 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sawaisorn, P. et al. Comparison of the efficacy of second and third generation lentiviral vector transduced CAR CD19 T cells for use in the treatment of acute lymphoblastic leukemia both in vitro and in vivo models. PLoS ONE 18, e0281735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, P. et al. CD24 is a novel target of chimeric antigen receptor T cells for the treatment of triple negative breast cancer. Cancer Immunol. Immunother. 72, 3191–3202 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, J.-E. et al. Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo. J. Control. Rel. 350, 298–307 (2022).

    Article  CAS  Google Scholar 

  43. Billingsley, M. M. et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20, 1578–1589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gray, S. J. et al. Production of recombinant adeno-associated viral vectors and use in in vitro and in vivo administration. Curr. Protoc. Neurosci. 57, 4.17.1–4.17.30 (2011).

  45. Edwards, D. A., Gooch, K. J., Zhang, I., McKinley, G. H. & Langer, R. The nucleation of receptor-mediated endocytosis. Proc. Natl Acad. Sci. USA 93, 1786–1791 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Muto, S., Ohtaka, A., Nemoto, J., Kawakami, K. & Asano, Y. Effects of hyperosmolality on Na, K-ATPase gene expression in vascular smooth muscle cells. J. Membr. Biol. 162, 233–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Yue, Y. & Wu, C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater. Sci. 1, 152–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Da Silva Sanchez, A. J. et al. Universal barcoding predicts in vivo ApoE-independent lipid nanoparticle delivery. Nano Lett. 22, 4822–4830 (2022).

    Article  PubMed  Google Scholar 

  51. Zhu, Y. et al. Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression. Nat. Comm. 13, 4282 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors disclose support for the research described in this study from the National Institutes of Health (Grant numbers: R01 GM134542 to S.X.S. and K.K.; R01 CA257647 to K.K.). We thank J. Schneck from the Department of Pathology at the Johns Hopkins University School of Medicine for providing the human PBMCs as a gift and H. Bui from the Johns Hopkins University Integrated Imaging Center (IIC) for assistance with the flow cytometry assessments. Portions of the schematics in Figs. 36 and Supplementary Figs. 1, 2 and 13 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

H.-Q.M., S.X.S., Y.Z. and J.M. conceived and designed this study. J.M., Y.Z., J.K., D.Y., W.H.T., M.J. and J.L. performed the experiments. J.M., Y.Z., J.K., D.Y., W.H.T., M.J., Q.N., Z.G., J.C., K.K., M.F.K., S.X.S. and H.-Q.M. contributed to the data analysis and interpretation. J.M., Y.Z. and H.-Q.M. wrote the manuscript with input from all other authors. H.-Q.M. and S.X.S. secured the funding and supervised this study.

Corresponding authors

Correspondence to Sean X. Sun or Hai-Quan Mao.

Ethics declarations

Competing interests

H.-Q.M., S.X.S., J.M., Y.Z., Q.N. and Z.G. are co-inventors of a patent application (PCT/US2024/039036, filed in July 2024) covering the compositions and transfection methods described in this paper, filed through and managed by Johns Hopkins Office of Technology Ventures. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Michael Mitchell, Suzie Pun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20 and Tables 1–3.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Zhu, Y., Kong, J. et al. Tuning extracellular fluid viscosity to enhance transfection efficiency. Nat Chem Eng (2024). https://doi.org/10.1038/s44286-024-00116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44286-024-00116-3

  • Springer Nature America, Inc.

Navigation