Skip to main content

Advertisement

Log in

Opioid-induced neuroanatomical, microglial and behavioral changes are blocked by suvorexant without diminishing opioid analgesia

  • Article
  • Published:

From Nature Mental Health

View current issue Submit your manuscript

Abstract

Heroin use disorder in humans and chronic opioid administration to mice result in an increase in the number and a decrease in the size of detected hypocretin (Hcrt, or orexin) neurons. Chronic morphine administration to mice increases Hcrt axonal projections to the ventral tegmental area (VTA), the level of tyrosine hydroxylase (TH) in VTA and the number of detected TH+ cells in VTA, and activates VTA and hypothalamic microglia. Co-administration of morphine with the dual Hcrt receptor antagonist suvorexant prevents morphine-induced changes in the number and size of Hcrt neurons, the increase in Hcrt projections to the VTA and microglial activation in the VTA and hypothalamus. Co-administration of suvorexant with morphine also prevents morphine anticipatory behavior and reduces opioid withdrawal symptoms. However, suvorexant does not diminish morphine analgesia. Here we show that combined administration of opioids and suvorexant may reduce the addiction potential of opioid use for pain relief in humans while maintaining the analgesic effects of opioids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Involvement of opioid receptors in the increased number of detected Hcrt neurons and the shrinkage in Hcrt neuron size caused by opioids.
Fig. 2: Chronic opioid administration does not induce Hcrt expression in non-Hcrt neurons.
Fig. 3: Suvorexant blocked changes in Hcrt cell number and size produced by morphine.
Fig. 4: Suvorexant blocked microglial activation in the hypothalamus and VTA.
Fig. 5: Effect of chronic morphine on Hcrt projections, TH levels and TH cell number in VTA and SN.
Fig. 6: Hcrt receptor blockade prevents conditioned morphine anticipation of daily morphine injection.

Similar content being viewed by others

Data availability

All data presented in this work have been deposited in G-Node (https://gin.g-node.org/fmfwu/Siegel_NatureMH_2024) and are available without restrictions from the corresponding author.

References

  1. Cicero, T. J. No end in sight: the abuse of prescription narcotics. Cerebrum 2015, 1–15 (2015).

    Google Scholar 

  2. Mack, K. A., Jones, C. M. & McClure, R. J. Physician dispensing of oxycodone and other commonly used opioids, 2000–2015, United States. Pain Med. 19, 990–996 (2018).

    Article  PubMed  Google Scholar 

  3. Kelly, M. M., Reilly, E., Quinones, T., Desai, N. & Rosenheck, R. Long-acting intramuscular naltrexone for opioid use disorder: Utilization and association with multi-morbidity nationally in the Veterans Health Administration. Drug Alcohol Depend. 183, 111–117 (2018).

    Article  PubMed  Google Scholar 

  4. Parthvi, R., Agrawal, A., Khanijo, S., Tsegaye, A. & Talwar, A. Acute opiate overdose: an update on management strategies in emergency department and critical care unit. Am. J. Ther. 26, e380–e387 (2019).

    Article  PubMed  Google Scholar 

  5. Thannickal, T. C. et al. Human narcolepsy is linked to reduced number, size and synaptic bouton density in hypocretin-2 labeled neurons. Abstr. Soc. Neurosci. 26, 2061 (2000).

    Google Scholar 

  6. Thannickal, T. C. et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997 (2000).

    Article  PubMed  Google Scholar 

  8. Thannickal, T. C. et al. Opiates increase the number of hypocretin-producing cells in mouse and human brain, and reverse cataplexy in a mouse model of narcolepsy. Sci. Transl. Med. 10, eaao4953 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fragale, J. E., James, M. H. & Aston-Jones, G. Intermittent self-administration of fentanyl induces a multifaceted addiction state associated with persistent changes in the orexin system. Addict. Biol. 26, e12946 (2021).

    Article  PubMed  Google Scholar 

  10. James, M. H. et al. Increased number and activity of a lateral subpopulation of hypothalamic orexin/hypocretin neurons underlies the expression of an addicted state in rats. Biol. Psychiatry 85, 925–935 (2019).

    Article  PubMed  Google Scholar 

  11. Guilleminault, C. & Cao, M. T. in Principles and Practice of Sleep Medicine (eds Kryger, M. H. et al.) 957–968 (Elsevier, 2011).

  12. Darke, S., Kaye, S., Duflou, J. & Lappin, J. Completed suicide among methamphetamine users: a national study. Suicide Life Threat. Behav. 49, 328–337 (2019).

    Article  PubMed  Google Scholar 

  13. Zhu, J., Spencer, T. J., Liu-Chen, L. Y., Biederman, J. & Bhide, P. G. Methylphenidate and μ opioid receptor interactions: a pharmacological target for prevention of stimulant abuse. Neuropharmacology 61, 283–292 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ponz, A. et al. Abnormal activity in reward brain circuits in human narcolepsy with cataplexy. Ann. Neurol. 67, 190–200 (2010).

    Article  PubMed  Google Scholar 

  15. Schwartz, S. et al. Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy. Brain 131, 514–522 (2007).

    Article  PubMed  Google Scholar 

  16. Kiyashchenko, L. I. et al. Release of hypocretin (orexin) during waking and sleep states. J. Neurosci. 22, 5282–5286 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  17. McGregor, R., Wu, M.-F., Barber, G., Ramanathan, L. & Siegel, J. M. Highly specific role of hypocretin (orexin) neurons: differential activation as a function of diurnal phase, operant reinforcement vs. operant avoidance and light level. J. Neurosci. 31, 15455–15467 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mileykovskiy, B. Y., Kiyashchenko, L. I. & Siegel, J. M. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46, 787–798 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu, M. F., Nienhuis, R., Maidment, N., Lam, H. A. & Siegel, J. M. Role of the hypocretin (orexin) receptor 2 (Hcrt-r2) in the regulation of hypocretin level and cataplexy. J. Neurosci. 31, 6305–6310 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wu, M. F., Nienhuis, R., Maidment, N., Lam, H. A. & Siegel, J. M. Cerebrospinal fluid hypocretin (orexin) levels are elevated by play but are not raised by exercise and its associated heart rate, blood pressure, respiration or body temperature changes. Arch. Ital. Biol. 149, 492–498 (2011).

    PubMed  PubMed Central  Google Scholar 

  21. Blouin, A. M. et al. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat. Commun. 4, 1547 (2013).

    Article  PubMed  Google Scholar 

  22. Farahimanesh, S., Zarrabian, S. & Haghparast, A. Role of orexin receptors in the ventral tegmental area on acquisition and expression of morphine-induced conditioned place preference in the rats. Neuropeptides. 66, 45–51 (2017).

    Article  PubMed  Google Scholar 

  23. Meye, F. J., van Zessen, R., Smidt, M. P., Adan, R. A. H. & Ramakers, G. M. J. Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area. J. Neurosci. 32, 16120–16128 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Stefano, G. B. & Kream, R. M. Endogenous morphine synthetic pathway preceded and gave rise to catecholamine synthesis in evolution (review). Int. J. Mol. Med. 20, 837–841 (2007).

    PubMed  Google Scholar 

  25. Baimel, C. et al. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br. J. Pharmacol. 172, 334–348 (2015).

    Article  PubMed  Google Scholar 

  26. Vittoz, N. M., Schmeichel, B. & Berridge, C. W. Hypocretin/orexin preferentially activates caudomedial ventral tegmental area dopamine neurons. Eur. J. Neurosci. 28, 1629–1640 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Narita, M. et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J. Neurosci. 26, 398–405 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Balcita-Pedecino, J. J. & Sestak, S. R. Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and gamma-aminobutyric acid neurons. J. Comp. Neurol. 503, 668–684 (2007).

    Article  Google Scholar 

  29. Ji, K., Miyauchi, J. & Tsirka, S. E. Microglia: an active player in the regulation of synaptic activity. Neural Plast. 2013, 627325 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schafer, D. P., Lehrman, E. K. & Stevens, B. The ‘quad-partite’ synapse: microglia–synapse interactions in the developing and mature CNS. Glia 61, 24–36 (2013).

    Article  PubMed  Google Scholar 

  31. Zhan, Y. et al. Deficient neuron–microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  PubMed  Google Scholar 

  32. Taylor, A. M. W. et al. Neuroimmune regulation of GABAergic neurons within the ventral tegmental area during withdrawal from chronic morphine. Neuropsychopharmacology 41, 949–959 (2016).

    Article  PubMed  Google Scholar 

  33. Vilca, S. J., Margetts, A. V., Pollock, T. A. & Tuesta, L. M. Transcriptional and epigenetic regulation of microglia in substance use disorders. Mol. Cell. Neurosci. 125, 103838 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hutchinson, M. R. et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav. Immun. 23, 240–250 (2009).

    Article  PubMed  Google Scholar 

  35. Hutchinson, M. R. et al. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav. Immun. 22, 1248–1256 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Maduna, T. et al. Microglia express mu opioid receptor: insights from transcriptomics and fluorescent reporter mice. Front. Psychiatry 9, 726 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xiong, X. et al. Mitigation of murine focal cerebral ischemia by the hypocretin/orexin system is associated with reduced inflammation. Stroke 44, 764–770 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vickers, A. P. Naltrexone and problems in pain management. BMJ 332, 132–133 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Spitzer, N. C. Neurotransmitter switching? No surprise. Neuron 86, 1131–1144 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu, B., Kwok, R. P. S. & Fernstrom, J. D. Colchicine-induced increases in immunoreactive neuropeptide levels in hypothalamus: use as an index of biosynthesis. Life Sci. 49, 345–352 (1991).

    Article  PubMed  Google Scholar 

  41. McGregor, R. et al. Hypocretin/orexin interactions with norepinephrine contribute to the opiate withdrawal syndrome. J. Neurosci. 42, 255–263 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Juarez-Portilla, C. et al. Brain activity during methamphetamine anticipation in a non-invasive self-administration paradigm in mice. eNeuro 5, 1–14 (2018).

    Article  Google Scholar 

  43. LeSauter, J., Balsam, P. D., Simpson, E. H. & Silver, R. Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity. Eur. J. Neurosci. 51, 71–81 (2020).

    Article  PubMed  Google Scholar 

  44. Spitzer, N. C. Activity-dependent neurotransmitter respecification. Nat. Rev. Neurosci. 13, 94–106 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. McGregor, R., Shan, L., Wu, M. F. & Siegel, J. M. Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: implication for understanding and treating neuronal loss. PLoS ONE 12, e0178573 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Georgescu, D. et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 23, 3106–3111 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ma, H. et al. Excitation–transcription coupling, neuronal gene expression and synaptic plasticity. Nat. Rev. Neurosci. 24, 672–692 (2023).

    Article  PubMed  Google Scholar 

  48. Yap, E. L. & Greenberg, M. Activity-regulated transcription: bridging the gap between neural activity and behavior. Neuron 100, 330–348 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yamanaka, A., Tabuchi, S., Tsunematsu, T., Fukazawa, Y. & Tominaga, M. Orexin directly excites orexin neurons through orexin 2 receptor. J. Neurosci. 30, 12642–12652 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Robinson, J. D. & McDonald, P. H. The orexin 1 receptor modulates kappa opioid receptor function via a JNK-dependent mechanism. Cell. Signal. 27, 1449–1456 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Keith, D. R. et al. Time of day influences the voluntary intake and behavioral response to methamphetamine and food reward. Pharmacol. Biochem. Behav. 110, 117–126 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kosobud, A. E. K., Pecoraro, N. C., Rebec, G. V. & Timberlake, W. Circadian activity precedes daily methamphetamine injections in the rat. Neurosci. Lett. 250, 99–102 (1998).

    Article  PubMed  Google Scholar 

  53. Paqueron, X. et al. Is morphine-induced sedation synonymous with analgesia during intravenous morphine titration? Br. J. Anaesth. 89, 697–701 (2002).

    Article  PubMed  Google Scholar 

  54. Obukuro, K. et al. Nitric oxide mediates selective degeneration of hypothalamic orexin neurons through dysfunction of protein disulfide isomerase. J. Neurosci. 33, 12557–12568 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. John, J. et al. Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann. Neurol. 74, 786–793 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jalewa, J., Wong-Lin, K., McGinnity, T. M., Prasad, G. & Holscher, C. Increased number of orexin/hypocretin neurons with high and prolonged external stress-induced depression. Behav. Brain Res. 272, 196–204 (2014).

    Article  PubMed  Google Scholar 

  57. Palomba, M. et al. Alterations of orexinergic and melanin-concentrating hormone neurons in experimental sleeping sickness. Neuroscience 290, 185–195 (2015).

    Article  PubMed  Google Scholar 

  58. Crocker, A. et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology 65, 1184–1188 (2005).

    Article  PubMed  Google Scholar 

  59. Lopresti, N. M., Esguerra, M. & Mermelstein, P. G. Sex differences in animal models of opioid reward. Curr. Sex. Health Rep. 12, 186–194 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ito, D. et al. Microglia-specific localisation of a novel calcium binding protein, Iba1. Mol. Brain. Res. 57, 1–9 (1998).

    Article  PubMed  Google Scholar 

  61. Maldonado, R. et al. Reduction of morphine abstinence in mice with a mutation in the gene encoding CREB. Science 273, 657 (1996).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Support: DA034748 to J.M.S., DA058639 to J.M.S, HL148574 to J.M.S and the Medical Research Service of the Department of Veterans Affairs to J.M.S. A preprint of some of this work has been published (R. McGregor, M.-F. Wu, T. C. Thannickal & J. M. Siegel, Preprint at bioRxiv https://doi.org/10.1101/2023.09.22.559044 (2023). Opiate anticipation, opiate induced anatomical changes in hypocretin (Hcrt, orexin) neurons and opiate induced microglial activation are blocked by the dual Hcrt receptor antagonist suvorexant, while opiate analgesia is maintained. bioRxiv 559044v1, PMC10542511).

Author information

Authors and Affiliations

Authors

Contributions

R.M., M.-F.W., T.C.T. and J.M.S. designed the study. R.M. ran the anatomical experiments, M.-F.W. ran the behavioral experiments (wheel running and analgesia) and T.C.T. and S.L. ran the microglial studies. R.M., M.-F.W., T.C.T., S.L. and J.M.S. analyzed the results and R.M., M-F.W., T.C.T. and J.M.S. wrote the paper.

Corresponding author

Correspondence to Jerome M. Siegel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks John Peever and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGregor, R., Wu, MF., Thannickal, T.C. et al. Opioid-induced neuroanatomical, microglial and behavioral changes are blocked by suvorexant without diminishing opioid analgesia. Nat. Mental Health 2, 1018–1031 (2024). https://doi.org/10.1038/s44220-024-00278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00278-2

  • Springer Nature America, Inc.

This article is cited by

Navigation