Skip to main content
Log in

Boryl radical-mediated halogen-atom transfer enables arylation of alkyl halides with electrophilic and nucleophilic coupling partners

  • Article
  • Published:

From Nature Synthesis

View current issue Submit your manuscript

Abstract

Traditional metal-catalysed cross-couplings of alkyl halides for C(sp3)–C(sp2) bond formation are often challenging to achieve. Processes where the alkyl halide is initially converted into a radical species can provide valuable complementarity. So far, these strategies are almost exclusively orchestrated by silicon-based reagents, which can be expensive, have low atom economy and are sensitive to steric factors. Here we report the use of the stable Lewis acid–Lewis base complex Me3N–BH3, which, upon conversion into its corresponding amine-ligated boryl radical, enables nickel- and copper-catalysed cross-coupling of alkyl iodides and bromides with electrophilic aryl bromides and nucleophilic aryl boronic acids. Mechanistically, this method uses the amine borane radical’s propensity to activate halides via halogen-atom transfer through highly polarized transition states. This reactivity features mild conditions and broad tolerability of functional groups and engages sterically hindered alkyl halides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Cross-coupling of alkyl halides via radical intermediates requires activation via XAT.
Fig. 2: Mechanistic analysis and development of nickel-catalysed cross-coupling between alky halides and aryl bromides via boryl radical-mediated XAT.
Fig. 3: Substrate scope for the cross-coupling of alkyl iodides and bromides with aryl bromides.
Fig. 4: Mechanistic analysis and development of copper-catalysed cross-coupling between alky halides and aryl boronic acids via boryl radical-mediated XAT.

Similar content being viewed by others

Data availability

The authors declare that all relevant data supporting the findings of this study, including experimental procedures, compound characterization, computational study details, NMR spectra and other spectroscopic analysis, are available within the paper and its Supplementary Information.

References

  1. Smith, J. M., Harwood, S. J. & Baran, P. S. Radical retrosynthesis. Acc. Chem. Res. 51, 1807–1817 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pitre, S. P., Weires, N. A., Overman, L. E. & Forging C(sp3)–C(sp3) bonds with carbon-centered radicals in the synthesis of complex molecules. J. Am. Chem. Soc. 141, 2800–2813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crespi, S. & Fagnoni, M. Generation of alkyl radicals: from the tyranny of tin to the photon democracy. Chem. Rev. 120, 9790–9833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jasperse, C. P., Curran, D. P. & Fevig, T. L. Radical reactions in natural product synthesis. Chem. Rev. 91, 1237–1286 (2002).

    Article  Google Scholar 

  5. Perez Garcia, P. M., Di Franco, T., Epenoy, A., Scopelliti, R. & Hu, X. From dimethylamine to pyrrolidine: the development of an improved nickel pincer complex for cross-coupling of nonactivated secondary alkyl halides. ACS Catal. 6, 258–261 (2016).

    Article  CAS  Google Scholar 

  6. González-Bobes, F. & Fu, G. C. Amino alcohols as ligands for nickel-catalyzed Suzuki reactions of unactivated alkyl halides, including secondary alkyl chlorides, with arylboronic acids. J. Am. Chem. Soc. 128, 5360–5361 (2006).

    Article  PubMed  Google Scholar 

  7. Zhou, J. & Fu, G. C. Suzuki cross-couplings of unactivated secondary alkyl bromides and iodides. J. Am. Chem. Soc. 126, 1340–1341 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Campeau, L.-C. & Hazari, N. Cross-coupling and related reactions: connecting past success to the development of new reactions for the future. Organometallics 38, 3–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Kambe, N., Iwasaki, T. & Terao, J. Pd-catalyzed cross-coupling reactions of alkyl halides. Chem. Soc. Rev. 40, 4937–4947 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  11. Murarka, S. N-(acyloxy)phthalimides as redox-active esters in cross-coupling reactions.Adv. Synth. Catal. 360, 1735–1753 (2018).

    Article  CAS  Google Scholar 

  12. Torres, G. M., Liu, Y. & Arndtsen, B. A. A dual light-driven palladium catalyst: breaking the barriers in carbonylation reactions. Science 368, 318–323 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Julia, F., Constantin, T. & Leonori, D. Applications of halogen-atom transfer (XAT) for the generation of carbon radicals in synthetic photochemistry and photocatalysis. Chem. Rev. 122, 2292–2352 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Chatgilialoglu, C., Ferreri, C., Landais, Y. & Timokhin, V. I. Thirty years of (TMS)3SiH: a milestone in radical-based synthetic chemistry. Chem. Rev. 118, 6516–6572 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Ruffoni, A., Mykura, R. C., Bietti, M. & Leonori, D. The interplay of polar effects in controlling the selectivity of radical reactions. Nat. Synth. 1, 682–695 (2022).

    Article  Google Scholar 

  16. Curran, D. P., Bosch, E., Kaplan, J. & Newcomb, M. Rate constants for halogen atom transfer from representative.alpha.-halo carbonyl compounds to primary alkyl radicals. J. Org. Chem. 54, 1826–1831 (2002).

    Article  Google Scholar 

  17. Curran, D. P., Jasperse, C. P. & Totleben, M. J. Approximate absolute rate constants for the reactions of tributyltin radicals with aryl and vinyl halides. J. Org. Chem. 56, 7169–7172 (2002).

    Article  Google Scholar 

  18. Lavagnino, M. N., Liang, T. & MacMillan, D. W. C. HARC as an open-shell strategy to bypass oxidative addition in Ullmann–Goldberg couplings. Proc. Natl Acad. Sci. USA 117, 21058–21064 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, P., Le, C. C. & MacMillan, D. W. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Everson, D. A., Shrestha, R. & Weix, D. J. Nickel-catalyzed reductive cross-coupling of aryl halides with alkyl halides. J. Am. Chem. Soc. 132, 920–921 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Everson, D. A., Jones, B. A. & Weix, D. J. Replacing conventional carbon nucleophiles with electrophiles: nickel-catalyzed reductive alkylation of aryl bromides and chlorides. J. Am. Chem. Soc. 134, 6146–6159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paul, A., Smith, M. D. & Vannucci, A. K. Photoredox-assisted reductive cross-coupling: mechanistic insight into catalytic aryl–alkyl cross-couplings. J. Org. Chem. 82, 1996–2003 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Mann, A. in The Practice of Medicinal Chemistry 3rd edn (ed. Wermuth, C. G.) 363–379 (Academic Press, 2008).

  24. Zeng, X. et al. Aryl radical enabled, copper-catalyzed sonogashira-type cross-coupling of alkynes with alkyl iodides. ACS Catal. 13, 2761–2770 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai, A., Yan, W., Wang, C. & Liu, W. Copper-catalyzed difluoromethylation of alkyl iodides enabled by aryl radical activation of carbon–iodine bonds. Angew. Chem. Int. Ed. 60, 27070–27077 (2021).

    Article  CAS  Google Scholar 

  26. Cai, A., Yan, W. & Liu, W. Aryl radical activation of C–O bonds: copper-catalyzed deoxygenative difluoromethylation of alcohols. J. Am. Chem. Soc. 143, 9952–9960 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Caiger, L., Zhao, H., Constantin, T., Douglas, J. J. & Leonori, D. The merger of aryl radical-mediated halogen-atom transfer (XAT) and copper catalysis for the modular cross-coupling-type functionalization of alkyl iodides. ACS Catal. 13, 4985–4991 (2023).

    Article  CAS  Google Scholar 

  28. Constantin, T. et al. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 367, 1021–1026 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Rablen, P. R. Large effect on borane bond dissociation energies resulting from coordination by Lewis bases. J. Am. Chem. Soc. 119, 8350–8360 (1997).

    Article  CAS  Google Scholar 

  30. Baban, J. A. & Roberts, B. P. An electron spin resonance study of phosphine-boryl radicals; their structures and reactions with alkyl halides. J. Chem. Soc. Perkin Trans. 2, 1717–1722 (1984).

    Article  Google Scholar 

  31. Baban, J. A., Marti, V. P. J. & Roberts, B. P. Ligated boryl radicals. Part 2. Electron spin resonance studies of trialkylamin–boryl radicals. J. Chem. Soc. Perkin Trans. 2, 1723–1733 (1985).

    Article  Google Scholar 

  32. Ueng, S.-H. et al. Complexes of borane and N-heterocyclic carbenes: a new class of radical hydrogen atom donor. J. Am. Chem. Soc. 130, 10082–10083 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Walton, J. C. et al. EPR studies of the generation, structure, and reactivity of N-heterocyclic carbene borane radicals. J. Am. Chem. Soc. 132, 2350–2358 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, J. H. et al. A radical approach for the selective C–H borylation of azines. Nature 595, 677–683 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Ueng, S. H. et al. N-heterocyclic carbene boryl radicals: a new class of boron-centered radical. J. Am. Chem. Soc. 131, 11256–11262 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Solovyev, A. et al. Estimated rate constants for hydrogen abstraction from N-heterocyclic carbene−borane complexes by an alkyl radical. Org. Lett. 12, 2998–3001 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Wan, T. et al. Photoinduced halogen-atom transfer by N-heterocyclic carbene-ligated boryl radicals for C(sp3)–C(sp3) bond formation. J. Am. Chem. Soc. 145, 991–999 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Domingo, L. R. A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv. 4, 32415–32428 (2014).

    Article  CAS  Google Scholar 

  39. Lalevée, J., Tehfe, M. A., Allonas, X. & Fouassier, J. P. Boryl radicals as a new photoinitiating species: a way to reduce the oxygen inhibition. Macromolecules 41, 9057–9062 (2008).

    Article  Google Scholar 

  40. Shen, Y., Gu, Y. & Martin, R. sp3 C–H arylation and alkylation enabled by the synergy of triplet excited ketones and nickel catalysts. J. Am. Chem. Soc. 140, 12200–12209 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Tang, X. & Studer, A. Alkene 1,2-difunctionalization by radical alkenyl migration. Angew. Chem. Int. Ed. 57, 814–817 (2018).

    Article  CAS  Google Scholar 

  42. Kalinowski, M. K., Grabowski, Z. R. & Pakula, B. Reactivity of ketyl free radicals. Part 1.—Acid dissociation of aromatic ketyls and pinacols. Trans. Faraday Soc. 62, 918–925 (1966).

    Article  CAS  Google Scholar 

  43. Leigh, W. J., Arnold, D. R., Humphreys, R. W. R. & Wong, P. C. Merostabilization in radical ions, triplets, and biradicals. 4. Substituent effects on the half-wave reduction potentials and n,π* triplet energies of aromatic ketones. Can. J. Chem. 58, 2537–2549 (1980).

    Article  CAS  Google Scholar 

  44. Börjesson, M., Moragas, T. & Martin, R. Ni-catalyzed carboxylation of unactivated alkyl chlorides with CO2. J. Am. Chem. Soc. 138, 7504–7507 (2016).

    Article  PubMed  Google Scholar 

  45. Uehling, M. R., King, R. P., Krska, S. W., Cernak, T. & Buchwald, S. L. Pharmaceutical diversification via palladium oxidative addition complexes. Science 363, 405–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Lin, S.-T. & Roth, J. A. Nickel(0)-catalyzed sodium borohydride hydrogenolysis of aromatic bromides. J. Org. Chem. 44, 309–310 (1979).

    Article  CAS  Google Scholar 

  47. Brown, C. A. & Brown, H. C. The reaction of sodium borohydride with nickel acetate in aqueous solution—a convenient synthesis of an active nickel hydrogenation catalyst of low isomerizing tendency. J. Am. Chem. Soc. 85, 1003–1005 (1963).

    Article  CAS  Google Scholar 

  48. Raje, S. & Angamuthu, R. Solvent-free synthesis and reactivity of nickel(ii) borohydride and nickel(ii) hydride. Green Chem. 21, 2752–2758 (2019).

    Article  CAS  Google Scholar 

  49. Buchner, W. & Niederprum, H. Sodium borohydride and amine-boranes, commercially important reducing agents. Pure Appl. Chem. 49, 733–743 (1977).

    Article  Google Scholar 

  50. Greaves, M. E., Johnson Humphrey, E. L. B. & Nelson, D. J. Reactions of nickel(0) with organochlorides, organobromides, and organoiodides: mechanisms and structure/reactivity relationships. Catal. Sci. Technol. 11, 2980–2996 (2021).

    Article  CAS  Google Scholar 

  51. Meyer, A. U., Slanina, T., Yao, C.-J. & König, B. Metal-free perfluoroarylation by visible light photoredox catalysis. ACS Catal. 6, 369–375 (2016).

    Article  CAS  Google Scholar 

  52. Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel Lecture). Angew. Chem. Int. Ed. 50, 6722–6737 (2011).

    Article  CAS  Google Scholar 

  53. Santanilla, A. B. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 44–49 (2015).

    Google Scholar 

  54. Zhang, Z., Górski, B. & Leonori, D. Merging halogen-atom transfer (XAT) and copper catalysis for the modular Suzuki–Miyaura-type cross-coupling of alkyl iodides and organoborons. J. Am. Chem. Soc. 144, 1986–1992 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kharasch, M. S. & Sosnovsky, G. The reactions of t-butyl perbenzoate and olefins—a stereospecific reaction. J. Am. Chem. Soc. 80, 756 (1958).

    Article  CAS  Google Scholar 

  56. Kochi, J. K. & Subramanian, R. V. Kinetics of electron-transfer oxidation of alkyl radicals by copper(II) complexes. J. Am. Chem. Soc. 87, 4855–4866 (1965).

    Article  CAS  Google Scholar 

  57. Casitas, A. & Ribas, X. The role of organometallic copper(iii) complexes in homogeneous catalysis. Chem. Sci. 4, 2301–2318 (2013).

    Article  CAS  Google Scholar 

  58. Cook, X. A. F., de Gombert, A., McKnight, J., Pantaine, L. R. E. & Willis, M. C. The 2-pyridyl problem: challenging nucleophiles in cross-coupling arylations. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202010631 (2020).

  59. WO 2015/105860 A1 (3-V Biosciences, 2015).

  60. WO 2017/001660 A (Janssen Sciences Ireland UC, 2017).

Download references

Acknowledgements

C. Vermeeren (RWTH Aachen University) is acknowledged for help with the purification of some of the products. J. Liu is acknowledged for the help in the preparation of some starting materials. Computations were performed with computing resources granted by RWTH Aachen University under project RWTH1268.

Author information

Authors and Affiliations

Authors

Contributions

D.L. and Z.Z. designed the project; Z.Z. performed the synthetic experiments; M.J.T. performed the computational studies; all authors analysed and discussed the results and wrote the paper.

Corresponding author

Correspondence to Daniele Leonori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jia-Rong Chen, Ignacio Funes-Ardoiz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Table 1, experimental details, characterization data and computational analysis details.

Supplementary Data 1

Coordinates (xyz) of the computational section.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Tilby, M.J. & Leonori, D. Boryl radical-mediated halogen-atom transfer enables arylation of alkyl halides with electrophilic and nucleophilic coupling partners. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00587-5

  • Springer Nature Limited

This article is cited by

Navigation