Skip to main content

Advertisement

Log in

Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides

  • Perspective
  • Published:

From Nature Electronics

View current issue Submit your manuscript

Abstract

The development of high-performance electronic devices based on two-dimensional (2D) transition metal dichalcogenide semiconductors has recently advanced from one-off proof-of-principle demonstrations to more reproducible integrated devices. It has, in particular, reached a point where the material quality—as well as the interfaces between the metal contacts, dielectrics and 2D semiconductors—must be optimized to increase device performance. Here we examine the key immediate challenges for the development of electronics based on 2D transition metal dichalcogenides, and identify doping, p-type contacts and high-dielectric-constant dielectrics as critical issues. We argue that these challenges stem from the high density of defects present in 2D transition metal dichalcogenides, and suggest that the community focus more on the growth of high-quality materials with a low concentration of defects. We also provide recommendations on identifying industry-compatible dielectrics for these 2D devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Defects in 2D TMDs.
Fig. 2: Electrical contacts for 2D TMDs.
Fig. 3: Oxide dielectrics for 2D TMDs.

Similar content being viewed by others

References

  1. 2D Transition Metal Dichalcogenides 2023. RSC https://www.rsc.org/events/detail/76461/2d-transition-metal-dichalcogenides-2023 (2023).

  2. Liu, S. et al. Two-step flux synthesis of ultrapure transition-metal dichalcogenides. ACS Nano 17, 16587–16596 (2023).

    Article  Google Scholar 

  3. Pack, J. et al. Charge-transfer contact to a high-mobility monolayer semiconductor. Preprint at https://arxiv.org/abs/2310.19782 (2023).

  4. Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).

    Article  Google Scholar 

  5. Dodda, A. et al. Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater. 21, 1379–1387 (2022).

    Article  Google Scholar 

  6. Lanza, M. & Radu, I. Electronic circuits made of 2D materials. Adv. Mater. 34, 2207843 (2022).

    Article  Google Scholar 

  7. Hung, T. Y. T. et al. pMOSFET with CVD-grown 2D semiconductor channel enabled by ultra-thin and fab-compatible spacer doping. In 2022 International Electron Devices Meeting (IEDM) 7.3.1–7.3.4 (IEEE, 2022).

  8. Sutar, S. et al. Spin-on-diffussants for doping in transition metal dichalcogenide semiconductors. Appl. Phys. Lett. 114, 212102 (2019).

    Article  Google Scholar 

  9. Wan, Y. et al. Low-defect-density WS2 by hydroxide vapor phase deposition. Nat. Commun. 13, 4149 (2022).

    Article  Google Scholar 

  10. Lien, D. H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).

    Article  Google Scholar 

  11. Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

    Article  Google Scholar 

  12. Lien, D. H. et al. Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nat. Commun. 9, 1229 (2018).

    Article  Google Scholar 

  13. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  Google Scholar 

  14. Luo, P. et al. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron. 5, 849–858 (2022).

    Article  Google Scholar 

  15. Utama, M. I. B. et al. A dielectric-defined lateral heterojunction in a monolayer semiconductor. Nat. Electron. 2, 60–65 (2019).

    Article  Google Scholar 

  16. Ho, P.-H. et al. High-performance two-dimensional electronics with a noncontact remote doping method. ACS Nano 17, 12208–12215 (2023).

    Article  Google Scholar 

  17. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  Google Scholar 

  18. Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Article  Google Scholar 

  19. Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).

    Article  Google Scholar 

  20. Luisier, M. et al. First-principles simulations of 2-D semiconductor devices: mobility, IV characteristics, and contact resistance. In 2016 International Electron Devices Meeting (IEDM) 5.4.1–5.4.4 (IEEE, 2016).

  21. Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Prim. 1, 5 (2021).

    Article  Google Scholar 

  22. Yang, J. et al. Single atomic vacancy catalysis. ACS Nano 13, 9958–9964 (2019).

    Article  Google Scholar 

  23. Komsa, H. P. & Krasheninnikov, A. V. Native defects in bulk and monolayer MoS2 from first principles. Phys. Rev. B 91, 125304 (2015).

    Article  Google Scholar 

  24. Salehi, S. & Saffarzadeh, A. Atomic defect states in monolayers of MoS2 and WS2. Surf. Sci. 651, 215–221 (2016).

    Article  Google Scholar 

  25. Liu, M. et al. Temperature-triggered sulfur vacancy evolution in monolayer MoS2/graphene heterostructures. Small 13, 1602967 (2017).

    Article  Google Scholar 

  26. Schuler, B. et al. How substitutional point defects in two-dimensional WS2 induce charge localization, spin-orbit splitting, and strain. ACS Nano 13, 10520–10534 (2019).

    Article  Google Scholar 

  27. Addou, R. et al. Impurities and electronic property variations of natural MoS2 crystal surfaces. ACS Nano 9, 9124–9133 (2015).

    Article  Google Scholar 

  28. Zhu, Y. et al. Room-temperature photoluminescence mediated by sulfur vacancies in 2D molybdenum disulfide. ACS Nano 17, 13545–13553 (2023).

    Article  Google Scholar 

  29. Grünleitner, T. et al. Real-time investigation of sulfur vacancy generation and passivation in monolayer molybdenum disulfide via in situ X-ray photoelectron spectromicroscopy. ACS Nano 16, 20364–20375 (2022).

    Article  Google Scholar 

  30. Mitterreiter, E. et al. The role of chalcogen vacancies for atomic defect emission in MoS2. Nat. Commun. 12, 3822 (2021).

    Article  Google Scholar 

  31. Gogoi, P. K. et al. Oxygen passivation mediated tunability of trion and excitons in MoS2. Phys. Rev. Lett. 119, 077402 (2017).

    Article  Google Scholar 

  32. Barja, S. et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 10, 3382 (2019).

    Article  Google Scholar 

  33. Shen, P. C. et al. Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nat. Electron. 5, 28–36 (2022).

    Article  Google Scholar 

  34. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  Google Scholar 

  35. Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    Article  Google Scholar 

  36. Fu, J. H. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. 18, 1289–1294 (2023).

    Article  Google Scholar 

  37. Zhu, J. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456–463 (2023).

    Article  Google Scholar 

  38. Zhu, H. et al. Step engineering for nucleation and domain orientation control in WSe2 epitaxy on c-plane sapphire. Nat. Nanotechnol. 18, 1295–1302 (2023).

    Article  Google Scholar 

  39. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  Google Scholar 

  40. Lin, Y. C. et al. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12, 965–975 (2018).

    Article  Google Scholar 

  41. Bampoulis, P., Sotthewes, K., Siekman, M. H. & Zandvliet, H. J. W. Local conduction in MoxW1−xSe2: the role of stacking faults, defects, and alloying. ACS Appl. Mater. Interfaces 10, 13218–13225 (2018).

    Article  Google Scholar 

  42. Vu, N. T. T. et al. Single atomic defect conductivity for selective dilute impurity imaging in 2D semiconductors. ACS Nano 16, 15648–15655 (2023).

    Article  Google Scholar 

  43. Xu, K. et al. Validating the use of conductive atomic force microscopy for defect quantification in 2D materials. ACS Nano 17, 24743–24752 (2023).

    Article  Google Scholar 

  44. Zhang, K. et al. Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater. 28, 1706950 (2018).

    Article  Google Scholar 

  45. Suh, J. et al. Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun. 9, 199 (2018).

    Article  Google Scholar 

  46. Ho, P. H. et al. High-performance WSe2 top-gate devices with strong spacer doping. Nano Lett. 23, 10236–10242 (2023).

    Article  Google Scholar 

  47. Fang, H. et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991–1995 (2013).

    Article  Google Scholar 

  48. Kiriya, D., Tosun, M., Zhao, P., Kang, J. S. & Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853–7856 (2014).

    Article  Google Scholar 

  49. Chiang, C. C., Lan, H. Y., Pang, C. S., Appenzeller, J. & Chen, Z. Air-stable p-doping in record high-performance monolayer WSe2 devices. IEEE Electron Device Lett. 43, 319–322 (2022).

    Article  Google Scholar 

  50. McClellan, C. J., Yalon, E., Smithe, K. K. H., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).

    Article  Google Scholar 

  51. Lan, H. Y., Appenzeller, J. & Chen, Z. Dielectric interface engineering for high-performance monolayer MoS2 transistors via hBN interfacial layer and Ta seeding. In 2022 International Electron Devices Meeting (IEDM) 7.7.1–7.7.4 (IEEE, 2022).

  52. Kato, R. et al. P-type conversion of WS2 and WSe2 by position-selective oxidation doping and its application in top gate transistors. ACS Appl. Mater. Interfaces 15, 26977–26984 (2023).

    Article  Google Scholar 

  53. Yao, J. et al. Record 7(N)+7(P) multiple VTs demonstration on GAA Si nanosheet n/pFETs using WFM-less direct interfacial La/Al-dipole technique. In 2022 International Electron Devices Meeting (IEDM) 34.2.1–34.2.4 (IEEE, 2022).

  54. Zhang, Z. et al. Complementary carbon nanotube metal–oxide–semiconductor field-effect transistors with localized solid-state extension doping. Nat. Electron. 6, 999–1008 (2023).

    Article  Google Scholar 

  55. Zheng, X. et al. Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films. Appl. Phys. Lett. 118, 093103 (2021).

    Article  Google Scholar 

  56. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  Google Scholar 

  57. Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  Google Scholar 

  58. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article  Google Scholar 

  59. Wu, R. et al. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 5, 497–504 (2022).

    Article  Google Scholar 

  60. Yang, N. et al. Ab Initio computational screening and performance assessment of van der waals and semimetallic contacts to monolayer WSe2 p-type field-effect transistors. IEEE Trans. Electron Devices 70, 2090–2097 (2023).

    Article  Google Scholar 

  61. Hung, T. Y. T. et al. Pinning-free edge contact monolayer MoS2 FET. In 2020 IEEE International Electron Devices Meeting (IEDM) 3.3.1–3.3.4 (IEEE, 2020).

  62. Yang, H. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 606, 663–673 (2022).

    Article  Google Scholar 

  63. Walsh, L. A. et al. Interface chemistry of contact metals and ferromagnets on the topological insulator Bi2Se3. J. Phys. Chem. C 121, 23551–23563 (2017).

    Article  Google Scholar 

  64. Zhao, B. et al. A room-temperature spin-valve with van der Waals ferromagnet Fe5GeTe2/graphene heterostructure. Adv. Mater. 35, 2209113 (2023).

    Article  Google Scholar 

  65. Li, Y. et al. Photoluminescence of monolayer MoS2 on LaAlO3 and SrTiO3 substrates. Nanoscale 6, 15248–15254 (2014).

    Article  Google Scholar 

  66. Leonhardt, A. et al. Material-Selective doping of 2D TMDC through AlxOy encapsulation. ACS Appl. Mater. Interfaces 11, 42697–42707 (2019).

    Article  Google Scholar 

  67. Li, Y., Xu, C. Y., Hu, P. & Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 7, 7795–7804 (2013).

    Article  Google Scholar 

  68. Knobloch, T. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).

    Article  Google Scholar 

  69. Copel, M., Gribelyuk, M. & Gusev, E. Structure and stability of ultrathin zirconium oxide layers on Si(001). Appl. Phys. Lett. 76, 436–438 (2000).

    Article  Google Scholar 

  70. Yang, M. et al. Interfacial interaction between HfO2 and MoS2: from thin films to monolayer. J. Phys. Chem. C 120, 9804–9810 (2016).

    Article  Google Scholar 

  71. Robertson, J. & Wallace, R. M. High-k materials and metal gates for CMOS applications. Mater. Sci. Eng. R 88, 1–41 (2015).

    Article  Google Scholar 

  72. Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article  Google Scholar 

  73. Di, Z. et al. Single-crystalline metal oxides as dielectrics for top-gate two-dimensional transistors. Preprint at Research Square https://doi.org/10.21203/RS.3.RS-3366445/V1 (2023).

  74. Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).

    Article  Google Scholar 

  75. Huang, J. K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    Article  Google Scholar 

  76. Wang, L. et al. A general one-step plug-and-probe approach to top-gated transistors for rapidly probing delicate electronic materials. Nat. Nanotechnol. 17, 1206–1213 (2022).

    Article  Google Scholar 

  77. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  Google Scholar 

  78. Xu, Y. et al. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater. 22, 1078–1084 (2023).

    Article  Google Scholar 

  79. Wu, R. et al. Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 29, 1806611 (2019).

    Article  Google Scholar 

  80. Cho, H. et al. Se-vacancy healing with substitutional oxygen in WSe2 for high-mobility p-type field-effect transistors. ACS Nano 17, 11279–11289 (2023).

    Article  Google Scholar 

  81. Yang, S., Lee, G. & Kim, J. Selective p-doping of 2D WSe2 via UV/ozone treatments and its application in field-effect transistors. ACS Appl. Mater. Interfaces 13, 955–961 (2021).

    Article  Google Scholar 

  82. English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    Article  Google Scholar 

  83. Cui, X. et al. Lowerature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).

    Article  Google Scholar 

  84. Chou, A. S. et al. High on-state current in chemical vapor deposited monolayer MoS2 nFETs with sn ohmic contacts. IEEE Electron Device Lett. 42, 272–275 (2021).

    Article  Google Scholar 

  85. Smithe, K. K. H., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).

    Article  Google Scholar 

  86. Xie, J. et al. Low resistance contact to p-type monolayer WSe2. Nano. Lett. 24, 5937–5943 (2024).

    Article  Google Scholar 

  87. White, M. H. & Cricchi, J. R. Characterization of thin-oxide MNOS memory transistors. IEEE Trans. Electron Devices 19, 1280–1288 (1972).

    Article  Google Scholar 

  88. Rzepa, G. et al. Comphy—a compact-physics framework for unified modeling of BTI. Microelectron. Reliab. 85, 49–65 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

M.C. and Y.W. received funding from the European Research Council (ERC) Advanced Grant under the European Union’s Horizon 2020 research and innovation programme (grant agreement GA 101019828-2D- LOTTO]), Leverhulme Trust (RPG-2019-227), EPSRC (EP/ T026200/1, EP/T001038/1), Royal Society Wolfson Merit Award (WRM\FT\180009) and Department of Science, Innovation and Technology and the Royal Academy of Engineering under the Chair in Emerging Technologies programme (CiET -2324-134).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and M.C. wrote and edited the paper. S.S. and H.Y. contributed to the contact and dielectric studies. All authors commented on the final version of the paper.

Corresponding authors

Correspondence to Yan Wang or Manish Chhowalla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Xidong Duan and Yimo Han for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Sarkar, S., Yan, H. et al. Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides. Nat Electron 7, 638–645 (2024). https://doi.org/10.1038/s41928-024-01210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01210-3

  • Springer Nature Limited

Navigation