Skip to main content

Advertisement

Log in

Preamplification-free viral RNA diagnostics with single-nucleotide resolution using MARVE, an origami paper-based colorimetric nucleic acid test

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

The evolution and mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgent concerns as they pose the risk of vaccine failure and increased viral transmission. However, affordable and scalable tools allowing rapid identification of SARS-CoV-2 variants are not readily available, which impedes diagnosis and epidemiological surveillance. Here we present a colorimetric nucleic acid assay named MARVE (multiplexed, preamplification-free, single-nucleotide-resolved viral evolution) that is convenient to perform and yields single-nucleotide resolution. The assay integrates nucleic acid strand displacement reactions with enzymatic amplification to colorimetrically sense viral RNA using a metal ion-incorporated DNA probe (TEprobe). We provide detailed guidelines to design TEprobes for discriminating single-nucleotide variations in viral RNAs, and to fabricate a test paper for the detection of SARS-CoV-2 variants of concern. Compared with other nucleic acid assays, our assay is preamplification-free, single-nucleotide-resolvable and results are visible via a color change. Besides, it is smartphone readable, multiplexed, quick and cheap ($0.30 per test). The protocol takes ~2 h to complete, from the design and preparation of the DNA probes and test papers (~1 h) to the detection of SARS-CoV-2 or its variants (30–45 min). The design of the TEprobes requires basic knowledge of molecular biology and familiarity with NUPACK or the Python programming language. The fabrication of the origami papers requires access to a wax printer using the CAD and PDF files provided or requires users to be familiar with AutoCAD to design new origami papers. The protocol is also applicable for designing assays to detect other pathogens and their variants.

Key points

  • MARVE is a paper-based, preamplification-free assay for the detection of viral variants using toehold exchange (TE) DNA probes. The TEprobe binds to the target viral RNA and starts an enzymatic reaction, which results in low-pH conditions and a color change visible to the eye.

  • The high specificity of a nucleic acid test, combined with low cost and ease of use, makes MARVE suitable for home testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: A schematic illustration of the MARVE assay detection process.
Fig. 2: An overview of the MARVE assay.
Fig. 3: Pseudotyped virus construction.
Fig. 4: The pipeline for designing and optimizing TEprobes.
Fig. 5: Origami paper preparation.
Fig. 6: Construction of the enclosure for the smartphone.
Fig. 7: Image processing for an origami paper.
Fig. 8: A mobile web app for COVID-19 self-testing.
Fig. 9: An operation graphic of manually folding origami papers for viral RNA detection.
Fig. 10: Anticipated results for the visual detection of coronaviruses.
Fig. 11: Detection of three coronaviruses (SARS-CoV-2, SARS-CoV and MERS-CoV) spiked into throat swabs, frozen belt fish and food packaging.
Fig. 12: SARS-CoV-2 variant detection.
Fig. 13: Diagnostics of SARS-CoV-2 and its variants in clinical samples.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the source data and the supporting primary research papers16,17. Source data are provided with this paper.

Code availability

The mobile web apps for COVID-19 self-testing and viral contamination monitoring in food can be visited at http://47.109.38.99/origami1/ or at http://47.109.38.99/origami2/, respectively. The code for designing TEprobes is available on GitHub at https://github.com/Nelson233/TEprobe-design. The code for the two web apps is provided on GitHub at https://github.com/Nelson233/origami1 and https://github.com/Nelson233/origami2, respectively. The code for image analysis using MATLAB software is available on GitHub at https://github.com/Nelson233/MARVEL.

References

  1. Carabelli, A. M. et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat. Rev. Microbiol. 21, 162–177 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Amicone, M. et al. Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evol. Med. Public Health 10, 142–155 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Escalera, A. et al. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host Microbe 30, 373–387.e377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. DeGrace, M. M. et al. Defining the risk of SARS-CoV-2 variants on immune protection. Nature 605, 640–652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tomalka, J. A., Suthar, M. S., Deeks, S. G. & Sekaly, R. P. Fighting the SARS-CoV-2 pandemic requires a global approach to understanding the heterogeneity of vaccine responses. Nat. Immunol. 23, 360–370 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Beltran, W. F. et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184, 2372–2383.e2379 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petherick, A. Developing antibody tests for SARS-CoV-2. Lancet 395, 1101–1102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peeling, R. W., Heymann, D. L., Teo, Y.-Y. & Garcia, P. J. Diagnostics for COVID-19: moving from pandemic response to control. Lancet 399, 757–768 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Vogels, C. B. F. et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nat. Microbiol. 5, 1299–1305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bokelmann, L. et al. Point-of-care bulk testing for SARS-CoV-2 by combining hybridization capture with improved colorimetric LAMP. Nat. Commun. 12, 1467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qian, J. et al. An enhanced isothermal amplification assay for viral detection. Nat. Commun. 11, 5920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Osório, N. S. & Correia-Neves, M. Implication of SARS-CoV-2 evolution in the sensitivity of RT–qPCR diagnostic assays. Lancet Infect. Dis. 21, 166–167 (2021).

    Article  PubMed  Google Scholar 

  14. Robishaw, J. D. et al. Genomic surveillance to combat COVID-19: challenges and opportunities. Lancet Microbe 2, e481–e484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, P., de Vries, A. C., Kamar, N., Peppelenbosch, M. P. & Pan, Q. Monitoring and managing SARS-CoV-2 evolution in immunocompromised populations. Lancet Microbe 3, e325–e326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, T. et al. A paper-based assay for the colorimetric detection of SARS-CoV-2 variants at single-nucleotide resolution. Nat. Biomed. Eng. 6, 957–967 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, T. et al. Precise in-field molecular diagnostics of crop diseases by smartphone-based mutation-resolved pathogenic RNA analysis. Nat. Commun. 14, 4327 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dao Thi, V. L. et al. A colorimetric RT–LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci. Transl. Med. 12, eabc7075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, Q. et al. INSIGHT: a population-scale COVID-19 testing strategy combining point-of-care diagnosis with centralized high-throughput sequencing. Sci. Adv. 7, eabe5054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yelagandula, R. et al. Multiplexed detection of SARS-CoV-2 and other respiratory infections in high throughput by SARSeq. Nat. Commun. 12, 3132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garg, A. et al. Evaluation of seven commercial RT–PCR kits for COVID-19 testing in pooled clinical specimens. J. Med. Virol. 93, 2281–2286 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Panpradist, N. et al. Harmony COVID-19: a ready-to-use kit, low-cost detector, and smartphone app for point-of-care SARS-CoV-2 RNA detection. Sci. Adv. 7, eabj1281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alafeef, M., Moitra, P., Dighe, K. & Pan, D. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat. Protoc. 16, 3141–3162 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Mohammadniaei, M. et al. A non-enzymatic, isothermal strand displacement and amplification assay for rapid detection of SARS-CoV-2 RNA. Nat. Commun. 12, 5089 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Casati, B. et al. Rapid, adaptable and sensitive Cas13-based COVID-19 diagnostics using ADESSO. Nat. Commun. 13, 3308 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Patchsung, M. et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 4, 1140–1149 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Joung, J. et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. N. Engl. J. Med. 383, 1492–1494 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Xun, G., Lane, S. T., Petrov, V. A., Pepa, B. E. & Zhao, H. A rapid, accurate, scalable, and portable testing system for COVID-19 diagnosis. Nat. Commun. 12, 2905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding, X. et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR–Cas12a assay. Nat. Commun. 11, 4711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chandrasekaran, S. S. et al. Rapid detection of SARS-CoV-2 RNA in saliva via Cas13. Nat. Biomed. Eng. 6, 944–956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Puig, H. et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Sci. Adv. 7, eabh2944 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Welch, N. L. et al. Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants. Nat. Med. 28, 1083–1094 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arizti-Sanz, J. et al. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants. Nat. Biomed. Eng. 6, 932–943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Metsky, H. C. et al. Designing sensitive viral diagnostics with machine learning. Nat. Biotechnol. 40, 1123–1131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fozouni, P. et al. Amplification-free detection of SARS-CoV-2 with CRISPR–Cas13a and mobile phone microscopy. Cell 184, 323–333.e329 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, D. et al. Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 4, 1150–1158 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Phillips, E. A. et al. Detection of viral RNAs at ambient temperature via reporter proteins produced through the target-splinted ligation of DNA probes. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-41023-01028-y (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Puhach, O., Meyer, B. & Eckerle, I. SARS-CoV-2 viral load and shedding kinetics. Nat. Rev. Microbiol. 21, 147–161 (2023).

    CAS  PubMed  Google Scholar 

  40. Yuasa, S. et al. Viral load of SARS-CoV-2 Omicron is not high despite its high infectivity. J. Med. Virol. 94, 5543–5546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. La Scola, B. et al. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur. J. Clin. Microbiol. 39, 1059–1061 (2020).

    Article  Google Scholar 

  42. Gallichotte, E. N. et al. Early adoption of longitudinal surveillance for SARS-CoV-2 among staff in long-term care facilities: prevalence, virologic and sequence analysis. Microbiol. Spectr. 9, e01003–e01021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465–469 (2020).

    Article  PubMed  Google Scholar 

  44. Fu, E. & Downs, C. Progress in the development and integration of fluid flow control tools in paper microfluidics. Lab Chip 17, 614–628 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, K. & Green, A. A. Sensitive detection of SARS-CoV-2 on paper. Nat. Biomed. Eng. 6, 928–929 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Sakuma, T., Barry, Michael, A. & Ikeda, Y. Lentiviral vectors: basic to translational. Biochem. J. 443, 603–618 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Myhrvold, C. et al. Field-deployable viral diagnostics using CRISPR–Cas13. Science 360, 444–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weickmann, J. L. & Glitz, D. G. Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J. Biol. Chem. 257, 8705–8710 (1982).

    Article  CAS  PubMed  Google Scholar 

  49. Laue, T., Emmerich, P. & Schmitz, H. Detection of dengue virus RNA in patients after primary or secondary dengue infection by using the TaqMan automated amplification system. J. Clin. Microbiol. 37, 2543–2547 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simmel, F. C., Yurke, B. & Singh, H. R. Principles and applications of nucleic acid strand displacement reactions. Chem. Rev. 119, 6326–6369 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, S. X. & Seelig, G. An engineered kinetic amplification mechanism for single nucleotide variant discrimination by DNA hybridization probes. J. Am. Chem. Soc. 138, 5076–5086 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Martinez, A. W., Phillips, S. T., Butte, M. J. & Whitesides, G. M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007).

    Article  CAS  Google Scholar 

  53. Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M. & Whitesides, G. M. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8, 2146–2150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dungchai, W., Chailapakul, O. & Henry, C. S. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136, 77–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Yamada, K., Henares, T. G., Suzuki, K. & Citterio, D. Paper-based inkjet-printed microfluidic analytical devices. Angew. Chem. Int. Ed. 54, 5294–5310 (2015).

    Article  CAS  Google Scholar 

  56. Apilux, A., Ukita, Y., Chikae, M., Chailapakul, O. & Takamura, Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13, 126–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Ghosh, R., Gopalakrishnan, S., Savitha, R., Renganathan, T. & Pushpavanam, S. Fabrication of laser printed microfluidic paper-based analytical devices (LP-µPADs) for point-of-care applications. Sci. Rep. 9, 7896 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Almeida, M. I. G. S., Jayawardane, B. M., Kolev, S. D. & McKelvie, I. D. Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: a review. Talanta 177, 176–190 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Smereka, M. & Dulęba, I. Circular object detection using a modified hough transform. Int. J. Appl. Math. Comput. Sci. 18, 85–91 (2008).

    Article  Google Scholar 

  60. Hoo, Z. H., Candlish, J. & Teare, D. What is an ROC curve? Emerg. Med. J. 34, 357–359 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all authors of the primary research paper. The work was funded by the National Key Research and Development Program of China (2023YFB3208302 and 2021YFA1200104), the New Cornerstone Investigator Program, National Natural Science Foundation of China (22074100 and 22027807), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB36000000) and Tsinghua-Vanke Special Fund for Public Health and Health Discipline Development (2022Z82WKJ003).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and R.D. conceived and designed the protocol. R.D. and T.Z. developed the protocol. T.Z., R.D., Y.W. and X.T. performed the experiments and analyzed the data. R.D. and T.Z. wrote the manuscript. J.L. edited the manuscript. All authors read, commented on and accepted the final manuscript.

Corresponding authors

Correspondence to Ruijie Deng or Jinghong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Changqing Yi, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references that have used this protocol

Zhang, T. et al. Nat. Biomed. Eng. 6, 957–967 (2022): https://doi.org/10.1038/s41551-022-00907-0

Zhang, T. et al. Nat. Commun. 14, 4327 (2023): https://doi.org/10.1038/s41467-023-39952-x

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1 and 2.

Supplementary Video 1

The illustration of paper folding using the enclosure.

Supplementary Data 1

The original CAD file of eight-site origami paper.

Supplementary Data 2

The PDF file of eight-site origami paper.

Supplementary Data 3

The original CAD file of four-site origami paper

Supplementary Data 4

The PDF file of four-site origami paper.

Supplementary Data 5

The original file of the enclosure.

Supplementary Data 6

The original CAD file of 100-site origami paper.

Supplementary Data 7

The PDF file of 100-site origami paper.

Source data

Source Data Fig. 10

Statistical source data.

Source Data Fig. 11

Statistical source data.

Source Data Fig. 12

Statistical source data.

Source Data Fig. 13

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, Y., Teng, X. et al. Preamplification-free viral RNA diagnostics with single-nucleotide resolution using MARVE, an origami paper-based colorimetric nucleic acid test. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-01022-x

  • Springer Nature Limited

Navigation