Skip to main content

Advertisement

Log in

Direct observation of prion-like propagation of protein misfolding templated by pathogenic mutants

  • Article
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Many neurodegenerative diseases feature misfolded proteins that propagate via templated conversion of natively folded molecules. However, crucial questions about how such prion-like conversion occurs and what drives it remain unsolved, partly because technical challenges have prevented direct observation of conversion for any protein. We observed prion-like conversion in single molecules of superoxide dismutase-1 (SOD1), whose misfolding is linked to amyotrophic lateral sclerosis. Tethering pathogenic misfolded SOD1 mutants to wild-type molecules held in optical tweezers, we found that the mutants vastly increased misfolding of the wild-type molecule, inducing multiple misfolded isoforms. Crucially, the pattern of misfolding was the same in the mutant and converted wild-type domains and varied when the misfolded mutant was changed, reflecting the templating effect expected for prion-like conversion. Ensemble measurements showed decreased enzymatic activity in tethered heterodimers as conversion progressed, mirroring the single-molecule results. Antibodies sensitive to disease-specific epitopes bound to the converted protein, implying that conversion produced disease-relevant misfolded conformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Force spectroscopy of propagated misfolding in SOD1.
Fig. 2: Observing prion-like conversion directly in individual refolding–unfolding cycles.
Fig. 3: Conversion is templated by the misfolded mutant.
Fig. 4: Different mutants generate different misfolding patterns.
Fig. 5: Conversion in tethered heterodimers monitored by enzymatic activity.
Fig. 6: Prion-like conversion of immature SOD1.

Similar content being viewed by others

Data availability

Data supporting this work have been deposited on Figshare (https://doi.org/10.6084/m9.figshare.25751289; ref. 51). Source data are provided with this paper.

References

  1. Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 27–68 (2017).

    Article  PubMed  CAS  Google Scholar 

  2. Colby, D. W. & Prusiner, S. B. Prions. Cold Spring Harb. Perspect. Biol. 3, a006833 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. McAlary, L., Plotkin, S. S., Yerbury, J. J. & Cashman, N. R. Prion-like propagation of protein misfolding and aggregation in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 12, 262 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Vaquer-Alicea, J. & Diamond, M. I. Propagation of protein aggregation in neurodegenerative diseases. Annu. Rev. Biochem. 88, 785–810 (2019).

    Article  PubMed  CAS  Google Scholar 

  5. Jahn, T. R. & Radford, S. E. Folding versus aggregation: polypeptide conformations on competing pathways. Arch. Biochem. Biophys. 469, 100–117 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yu, H. et al. Protein misfolding occurs by slow diffusion across multiple barriers in a rough energy landscape. Proc. Natl Acad. Sci. USA 112, 8308–8313 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hoffmann, A., Neupane, K. & Woodside, M. T. Single-molecule assays for investigating protein misfolding and aggregation. Phys. Chem. Chem. Phys. 15, 7934–7948 (2013).

    Article  PubMed  CAS  Google Scholar 

  8. Wu, J., Cao, C., Loch, R. A., Tiiman, A. & Luo, J. Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Q. Rev. Biophys. 53, e12 (2020).

    Article  PubMed  CAS  Google Scholar 

  9. Prudencio, M., Durazo, A., Whitelegge, J. P. & Borchelt, D. R. An examination of wild-type SOD1 in modulating the toxicity and aggregation of ALS-associated mutant SOD1. Hum. Mol. Genet. 19, 4774–4789 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Grad, L. I. et al. Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc. Natl Acad. Sci. USA 108, 16398–16403 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Woo, T.-G. et al. Novel chemical inhibitor against SOD1 misfolding and aggregation protects neuron-loss and ameliorates disease symptoms in ALS mouse model. Commun. Biol. 4, 1397 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lindberg, M. J., Normark, J., Holmgren, A. & Oliveberg, M. Folding of human superoxide dismutase: Disulfide reduction prevents dimerization and produces marginally stable monomers. Proc. Natl Acad. Sci. USA 101, 15893–15898 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lindberg, M. J., Byström, R., Boknäs, N., Andersen, P. M. & Oliveberg, M. Systematically perturbed folding patterns of amyotrophic lateral sclerosis (ALS)-associated SOD1 mutants. Proc. Natl Acad. Sci. USA 102, 9754–9759 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Proctor, E. A., Ding, F. & Dokholyan, N. V. Structural and thermodynamic effects of post-translational modifications in mutant and wild type Cu, Zn superoxide dismutase. J. Mol. Biol. 408, 555–567 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sen Mojumdar, S. et al. Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories. Nat. Commun. 8, 1881 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Broom, H. R., Rumfeldt, J. A. O., Vassall, K. A. & Meiering, E. M. Destabilization of the dimer interface is a common consequence of diverse ALS-associated mutations in metal free SOD1. Protein Sci. 24, 2081–2089 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hörnberg, A., Logan, D. T., Marklund, S. L. & Oliveberg, M. The coupling between disulphide status, metallation and dimer interface strength in Cu/Zn superoxide dismutase. J. Mol. Biol. 365, 333–342 (2007).

    Article  PubMed  Google Scholar 

  18. Petrosyan, R., Narayan, A. & Woodside, M. T. Single-molecule force spectroscopy of protein folding. J. Mol. Biol. 433, 167207 (2021).

    Article  PubMed  CAS  Google Scholar 

  19. Furukawa, Y. & O’Halloran, T. V. Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. J. Biol. Chem. 280, 17266–17274 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Oztug Durer, Z. A. et al. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase. PLoS ONE 4, e5004 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andersen, P. M. et al. Phenotypic heterogeneity in motor neuron disease patients with CuZn–superoxide dismutase mutations in Scandinavia. Brain 120, 1723–1737 (1997).

    Article  PubMed  Google Scholar 

  22. Juneja, T., Pericak-Vance, M. A., Laing, N. G., Dave, S. & Siddique, T. Prognosis in familial amyotrophic lateral sclerosis. Neurology 48, 55–57 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez, J. A. et al. Familial amyotrophic lateral sclerosis-associated mutations decrease the thermal stability of distinctly metallated species of human copper/zinc superoxide dismutase. J. Biol. Chem. 277, 15932–15937 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. Borchelt, D. R. et al. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl Acad. Sci. USA 91, 8292–8296 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jonsson, P. A. et al. Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. Brain 127, 73–88 (2004).

    Article  PubMed  Google Scholar 

  26. Weydert, C. J. & Cullen, J. J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 5, 51–66 (2010).

    Article  PubMed  CAS  Google Scholar 

  27. Rakhit, R. et al. An immunological epitope selective for pathological monomer-misfolded SOD1 in ALS. Nat. Med. 13, 754–759 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. Atlasi, R. S. et al. Investigation of anti-SOD1 antibodies yields new structural insight into SOD1 misfolding and surprising behavior of the antibodies themselves. ACS Chem. Biol. 13, 2794–2807 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Asor, R. & Kukura, P. Characterising biomolecular interactions and dynamics with mass photometry. Curr. Opin. Chem. Biol. 68, 102132 (2022).

    Article  PubMed  CAS  Google Scholar 

  30. Meisl, G., Knowles, T. P. & Klenerman, D. The molecular processes underpinning prion-like spreading and seed amplification in protein aggregation. Curr. Opin. Neurobiol. 61, 58–64 (2020).

    Article  PubMed  CAS  Google Scholar 

  31. Griffith, J. S. Nature of the scrapie agent: self-replication and scrapie. Nature 215, 1043–1044 (1967).

    Article  PubMed  CAS  Google Scholar 

  32. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. Scialò, C., De Cecco, E., Manganotti, P. & Legname, G. Prion and prion-like protein strains: deciphering the molecular basis of heterogeneity in neurodegeneration. Viruses 11, 261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Li, J., Browning, S., Mahal, S. P., Oelschlegel, A. M. & Weissmann, C. Darwinian evolution of prions in cell culture. Science 327, 869–872 (2010).

    Article  PubMed  CAS  Google Scholar 

  36. Bergh, J. et al. Structural and kinetic analysis of protein-aggregate strains in vivo using binary epitope mapping. Proc. Natl Acad. Sci. USA 112, 4489–4494 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sekhar, A. et al. Thermal fluctuations of immature SOD1 lead to separate folding and misfolding pathways. eLife 4, e07296 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Luchinat, E. et al. In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Nat. Commun. 5, 5502 (2014).

    Article  PubMed  CAS  Google Scholar 

  39. Stevens, J. C. et al. Modification of superoxide dismutase 1 (SOD1) properties by a GFP tag–implications for research into amyotrophic lateral sclerosis (ALS). PLoS ONE 5, e9541 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rotunno, M. S. et al. Identification of a misfolded region in superoxide dismutase 1 that is exposed in amyotrophic lateral sclerosis. J. Biol. Chem. 289, 28527–28538 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bruns, C. K. & Kopito, R. R. Impaired post-translational folding of familial ALS-linked Cu, Zn superoxide dismutase mutants. EMBO J. 26, 855–866 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Crown, A. et al. Tryptophan residue 32 in human Cu–Zn superoxide dismutase modulates prion-like propagation and strain selection. PLoS ONE 15, e0227655 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gupta, A. N. et al. Pharmacological chaperone reshapes the energy landscape for folding and aggregation of the prion protein. Nat. Commun. 7, 12058 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mashaghi, A., Kramer, G., Lamb, D. C., Mayer, M. P. & Tans, S. J. Chaperone action at the single-molecule level. Chem. Rev. 114, 660–676 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. Mitsumoto, H. et al. Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology 68, 1402–1410 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. Walder, R. et al. Rapid characterization of a mechanically labile α-helical protein enabled by efficient site-specific bioconjugation. J. Am. Chem. Soc. 139, 9867–9875 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Liang, Y. & Fu, G. C. Catalytic asymmetric synthesis of tertiary alkyl fluorides: Negishi cross-couplings of racemic α,α-dihaloketones. J. Am. Chem. Soc. 136, 5520–5524 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  PubMed  CAS  Google Scholar 

  49. Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Paul, S. S., Lyons, A., Kirchner, R. & Woodside, M. T. Quantifying oligomer populations in real time during protein aggregation using single-molecule mass photometry. ACS Nano 16, 16462–16470 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Neupane, K., Narayan, A., Sen Mojumdar, S. & Woodside, M.T. Single-molecule force spectroscopy data for prion-like conversion of wild-type SOD1 by pathogenic mutants G127X and G85R. Figshare https://doi.org/10.6084/m9.figshare.25751289

Download references

Acknowledgements

We thank N. Cashman (University of British Columbia, Canada) for helpful discussions and for providing antibody samples. This work was supported by the Alberta Prion Research Institute (grant 201600020), Canadian Institutes of Health Research (grant PJT-185931), Natural Sciences and Engineering Research Council Canada (grant RGPIN-2018-04673) and National Research Council Canada. A.N. acknowledges support from a Banting Postdoctoral Fellowship and an Alberta Innovates Postdoctoral Fellowship. G.A. acknowledges support from an Alberta Innovates studentship.

Author information

Authors and Affiliations

Authors

Contributions

K.N., A.N., S.S.M. and M.T.W. designed the research. K.N., A.N. and C.R.G. provided reagents. K.N., A.N., S.S.M. and G.A. performed experiments. K.N. and A.N. analyzed data. A.N. and M.T.W. wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Michael T. Woodside.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Gregory Merz, Tae-Young Yoon and Yongli Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Unfolding force distributions for native and misfolded states.

The distribution of unfolding forces for the native state (black) is similar to the distribution of unfolding forces seen for all misfolded states (red).

Source data

Extended Data Fig. 2 Sample unfolding FECs for G127X mutant.

Examples of unfolding curves for the misfolded G127X mutant showing total length changes of different amounts, reflecting different misfolded states.

Source data

Extended Data Fig. 3 Effect of chemical denaturant and reducing agent on conversion.

WST-1 formazan production by superoxide ions is normally inhibited by SOD1 activity; the drop in inhibition by SOD1 indicates that the enzyme becomes less active owing to conversion. (A) As the amount of chemical denaturant (GdnHCl) used to destabilize SOD1 is reduced from 1 M, the lag phase for conversion increases, until at 0 M no conversion is detected after 10 days. In each measurement, 5 mM TCEP was also present. (B) In the absence of any TCEP, but with 1 M GdnHCl, no conversion is detected after 10 days. All measurements were done using wt-G85R heterodimer. Error bars represent s.e.m. from 3 replicates.

Source data

Extended Data Fig. 4 Detection of disease-specific misfolded epitopes in converted wt SOD1.

Mass spectra from single-molecule mass photometry of (A) antibody 10C12 (sensitive specifically to disease-related misfolded C-terminal residues) and (B) 10C12 with wt-G127X heterodimer before conversion show distinct peaks for unbound antibody (dotted yellow line) and heterodimer (dotted gray line). (C) After 48 h conversion in the ensemble assay, the heterodimer peak is smaller and the antibody peak shifts. (D) Difference spectrum before and after conversion shows a decrease in unbound antibody and heterodimer and formation of a new peak at the mass of the bound complex.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Supplementary Figs. 1–3.

Reporting Summary

Supplementary Data 1

Supporting data for Supplementary Figs. 1–3.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, K., Narayan, A., Sen Mojumdar, S. et al. Direct observation of prion-like propagation of protein misfolding templated by pathogenic mutants. Nat Chem Biol 20, 1220–1226 (2024). https://doi.org/10.1038/s41589-024-01672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-024-01672-8

  • Springer Nature America, Inc.

Navigation