Skip to main content

Advertisement

Log in

Epigenome editing technologies for discovery and medicine

  • Review Article
  • Published:

From Nature Biotechnology

View current issue Submit your manuscript

Abstract

Epigenome editing has rapidly evolved in recent years, with diverse applications that include elucidating gene regulation mechanisms, annotating coding and noncoding genome functions and programming cell state and lineage specification. Importantly, given the ubiquitous role of epigenetics in complex phenotypes, epigenome editing has unique potential to impact a broad spectrum of diseases. By leveraging powerful DNA-targeting technologies, such as CRISPR, epigenome editing exploits the heritable and reversible mechanisms of epigenetics to alter gene expression without introducing DNA breaks, inducing DNA damage or relying on DNA repair pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic of CRISPR-based nucleases, base editors, prime editors and epigenome editors with a detailed panel of various epigenome-editing platforms.
Fig. 2: Schematic depicting the epigenetic regulation of gene expression.
Fig. 3: Schematic displaying gRNA library design for screens of genes and noncoding elements with various screening readouts.
Fig. 4: Schematic of ex vivo and in vivo applications of epigenome engineering.

Similar content being viewed by others

References

  1. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  2. Luo, Y. et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res. 48, D882–D889 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Waddington, C. H. The Strategy of the Genes. A Discussion of Some Aspect of Theoretical Biology (Allen & Unwin, 1957).

  4. Gersbach, C. A., Gaj, T. & Barbas, C. F. 3rd Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 47, 2309–2318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao, Z., Shang, P., Mohanraju, P. & Geijsen, N. Prime editing: advances and therapeutic applications. Trends Biotechnol. 41, 1000–1012 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Holtzman, L. & Gersbach, C. A. Editing the epigenome: reshaping the genomic landscape. Annu. Rev. Genomics Hum. Genet. 19, 43–71 (2018).

    CAS  Google Scholar 

  13. Fischle, W., Wang, Y. & Allis, C. D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15, 172–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Feinberg, A. P. Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Zoghbi, H. Y. & Beaudet, A. L. Epigenetics and human disease. Cold Spring Harb. Perspect. Biol. 8, a019497 (2016).

    Google Scholar 

  17. Cheng, A. W. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23, 1163–1171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thakore, P. I. et al. Highly specific epigenome editing by CRISPR–Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmidt, R. et al. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science 375, eabj4008 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klann, T. S. et al. CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35, 561–568 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR–Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nat. Methods 12, 401–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127–137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakamura, M., Gao, Y., Dominguez, A. A. & Qi, L. S. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 23, 11–22 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Villiger, L. et al. CRISPR technologies for genome, epigenome and transcriptome editing. Nat. Rev. Mol. Cell Biol. 25, 464–487 (2024).

  29. Gjaltema, R. A. F. & Rots, M. G. Advances of epigenetic editing. Curr. Opin. Chem. Biol. 57, 75–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Sgro, A. & Blancafort, P. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res. 48, 12453–12482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farzadfard, F., Perli, S. D. & Lu, T. K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2, 604–613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perez-Pinera, P. et al. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods 10, 239–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maeder, M. L. et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat. Methods 10, 243–245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chakraborty, S. et al. A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep. 3, 940–947 (2014).

    CAS  Google Scholar 

  35. Black, J. B. et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19, 406–414 (2016).

    CAS  Google Scholar 

  36. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Mahata, B. et al. Compact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional control. Nat. Methods 20, 1716–1728 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bintu, L. et al. Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alerasool, N., Segal, D., Lee, H. & Taipale, M. An efficient KRAB domain for CRISPRi applications in human cells. Nat. Methods 17, 1093–1096 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Tycko, J. et al. High-throughput discovery and characterization of human transcriptional effectors. Cell 183, 2020–2035 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O’Geen, H. et al. Ezh2–dCas9 and KRAB–dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin 12, 26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. O’Geen, H., Tomkova, M., Combs, J. A., Tilley, E. K. & Segal, D. J. Determinants of heritable gene silencing for KRAB–dCas9 + DNMT3 and Ezh2–dCas9 + DNMT3 hit-and-run epigenome editing. Nucleic Acids Res. 50, 3239–3253 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nunez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cappelluti, M. A. et al. Durable and efficient gene silencing in vivo by hit-and-run epigenome editing. Nature 627, 416–423 (2024).

  49. Ludwig, C. H. et al. High-throughput discovery and characterization of viral transcriptional effectors in human cells. Cell Syst. 14, 482–500 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alerasool, N., Leng, H., Lin, Z. Y., Gingras, A. C. & Taipale, M. Identification and functional characterization of transcriptional activators in human cells. Mol. Cell 82, 677–695 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Policarpi, C., Munafo, M., Tsagkris, S., Carlini, V. & Hackett, J. A. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nat. Genet. 56, 1168–1180 (2024).

  52. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morita, S. et al. Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060–1065 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Lei, Y. et al. Targeted DNA methylation in vivo using an engineered dCas9–MQ1 fusion protein. Nat. Commun. 8, 16026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiong, T. et al. Targeted DNA methylation in human cells using engineered dCas9–methyltransferases. Sci. Rep. 7, 6732 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sapozhnikov, D. M. & Szyf, M. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nat. Commun. 12, 5711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. O’Geen, H. et al. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res. 45, 9901–9916 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cano-Rodriguez, D. et al. Writing of H3K4me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7, 12284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Adhikari, A. et al. Functional rescue in an Angelman syndrome model following treatment with lentivector transduced hematopoietic stem cells. Hum. Mol. Genet. 30, 1067–1083 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Choudhury, S. R., Cui, Y., Lubecka, K., Stefanska, B. & Irudayaraj, J. CRISPR–dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7, 46545–46556 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ford, E. et al. A modular dCas9–SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9–DNMT3A constructs. Genome Res. 28, 1193–1206 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yao, D. et al. Multicenter integrated analysis of noncoding CRISPRi screens. Nat. Methods 21, 723–734 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sanson, K. R. et al. Optimized libraries for CRISPR–Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, Y. et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23, 758–771 (2018).

    CAS  Google Scholar 

  66. Black, J. B. et al. Master regulators and cofactors of human neuronal cell fate specification identified by CRISPR gene activation screens. Cell Rep. 33, 108460 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, J. et al. Genome-scale CRISPRa screen identifies novel factors for cellular reprogramming. Stem Cell Rep. 12, 757–771 (2019).

    CAS  Google Scholar 

  68. Coukos, R. et al. An engineered transcriptional reporter of protein localization identifies regulators of mitochondrial and ER membrane protein trafficking in high-throughput CRISPRi screens. eLife 10, e69142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luteijn, R. D. et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434–438 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Drager, N. M. et al. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat. Neurosci. 25, 1149–1162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, S. J. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355, aah7111 (2017).

    Article  PubMed  Google Scholar 

  73. Klann, T. S., Black, J. B. & Gersbach, C. A. CRISPR-based methods for high-throughput annotation of regulatory DNA. Curr. Opin. Biotechnol. 52, 32–41 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  76. Vierbuchen, T. & Wernig, M. Molecular roadblocks for cellular reprogramming. Mol. Cell 47, 827–838 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Weintraub, H. et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl Acad. Sci. USA 86, 5434–5438 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rao, L., Qian, Y., Khodabukus, A., Ribar, T. & Bursac, N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat. Commun. 9, 126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. D’Alessio, A. C. et al. A systematic approach to identify candidate transcription factors that control cell identity. Stem Cell Rep. 5, 763–775 (2015).

    Google Scholar 

  82. Morris, S. A. et al. Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell 158, 889–902 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rackham, O. J. et al. A predictive computational framework for direct reprogramming between human cell types. Nat. Genet. 48, 331–335 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Xu, Q. et al. ANANSE: an enhancer network-based computational approach for predicting key transcription factors in cell fate determination. Nucleic Acids Res. 49, 7966–7985 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jung, S., Appleton, E., Ali, M., Church, G. M. & Del Sol, A. A computer-guided design tool to increase the efficiency of cellular conversions. Nat. Commun. 12, 1659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Marazzi, L., Shah, M., Balakrishnan, S., Patil, A. & Vera-Licona, P. NETISCE: a network-based tool for cell fate reprogramming. NPJ Syst. Biol. Appl. 8, 21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Joung, J. et al. A transcription factor atlas of directed differentiation. Cell 186, 209–229 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ng, A. H. M. et al. A comprehensive library of human transcription factors for cell fate engineering. Nat. Biotechnol. 39, 510–519 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Parekh, U. et al. Mapping cellular reprogramming via pooled overexpression screens with paired fitness and single-cell RNA-sequencing readout. Cell Syst. 7, 548–555 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, P., Chen, M., Liu, Y., Qi, L. S. & Ding, S. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 22, 252–261 (2018).

    CAS  Google Scholar 

  91. Balboa, D. et al. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep. 5, 448–459 (2015).

    CAS  Google Scholar 

  92. Wei, S. et al. Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators. Sci. Rep. 6, 19648 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gao, X. et al. Reprogramming to pluripotency using designer TALE transcription factors targeting enhancers. Stem Cell Rep. 1, 183–197 (2013).

    CAS  Google Scholar 

  94. Gao, X. et al. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res. 42, e155 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fulco, C. P. et al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science 354, 769–773 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Diao, Y. et al. A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Res. 26, 397–405 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Diao, Y. et al. A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nat. Methods 14, 629–635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gasperini, M. et al. CRISPR/Cas9-mediated scanning for regulatory elements required for HPRT1 expression via thousands of large, programmed genomic deletions. Am. J. Hum. Genet. 101, 192–205 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Korkmaz, G. et al. Functional genetic screens for enhancer elements in the human genome using CRISPR–Cas9. Nat. Biotechnol. 34, 192–198 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Rajagopal, N. et al. High-throughput mapping of regulatory DNA. Nat. Biotechnol. 34, 167–174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sanjana, N. E. et al. High-resolution interrogation of functional elements in the noncoding genome. Science 353, 1545–1549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, P. B. et al. Systematic discovery and functional dissection of enhancers needed for cancer cell fitness and proliferation. Cell Rep. 41, 111630 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Reilly, S. K. et al. Direct characterization of cis-regulatory elements and functional dissection of complex genetic associations using HCR–FlowFISH. Nat. Genet. 53, 1166–1176 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mowery, C. T. et al. Systematic decoding of cis gene regulation defines context-dependent control of the multi-gene costimulatory receptor locus in human T cells. Nat. Genet. 56, 1156–1167 (2024).

  111. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yao, D. et al. Scalable genetic screening for regulatory circuits using compressed Perturb-seq. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01964-9 (2023).

  117. Klann, T. S. et al. Genome-wide annotation of gene regulatory elements linked to cell fitness. Preprint at bioRxiv https://doi.org/10.1101/2021.03.08.434470 (2021).

  118. Cosgrove, B. D. et al. Mechanosensitive genomic enhancers potentiate the cellular response to matrix stiffness. Preprint at bioRxiv https://doi.org/10.1101/2024.01.10.574997 (2024).

  119. Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Uda, M. et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc. Natl Acad. Sci. USA 105, 1620–1625 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vierstra, J. et al. Functional footprinting of regulatory DNA. Nat. Methods 12, 927–930 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Graslund, T., Li, X., Magnenat, L., Popkov, M. & Barbas, C. F. 3rd Exploring strategies for the design of artificial transcription factors: targeting sites proximal to known regulatory regions for the induction of γ-globin expression and the treatment of sickle cell disease. J. Biol. Chem. 280, 3707–3714 (2005).

    Article  PubMed  Google Scholar 

  124. Wilber, A. et al. A zinc-finger transcriptional activator designed to interact with the γ-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts. Blood 115, 3033–3041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Majzner, R. G. & Mackall, C. L. Clinical lessons learned from the first leg of the CAR T cell journey. Nat. Med. 25, 1341–1355 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Haradhvala, N. J. et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat. Med. 28, 1848–1859 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhu, I. et al. Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell 185, 1431–1443 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. & Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31, 71–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Tousley, A. M. et al. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature 615, 507–516 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Legut, M. et al. A genome-scale screen for synthetic drivers of T cell proliferation. Nature 603, 728–735 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Blaeschke, F. et al. Modular pooled discovery of synthetic knockin sequences to program durable cell therapies. Cell 186, 4216–4234 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. McCutcheon, S. R. et al. Transcriptional and epigenetic regulators of human CD8+ T cell function identified through orthogonal CRISPR screens. Nat. Genet. 55, 2211–2223 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971 (2018).

  141. Carnevale, J. et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 609, 174–182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Freitas, K. A. et al. Enhanced T cell effector activity by targeting the mediator kinase module. Science 378, eabn5647 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Prinzing, B. et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl. Med. 13, eabh0272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen, Z. et al. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 184, 1262–1280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yang, Z. et al. Contextual reprogramming of CAR-T cells for treatment of HER2+ cancers. J. Transl. Med. 19, 459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Belk, J. A. et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40, 768–786 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Guo, A. et al. cBAF complex components and MYC cooperate early in CD8+ T cell fate. Nature 607, 135–141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nahmad, A. D. et al. Frequent aneuploidy in primary human T cells after CRISPR–Cas9 cleavage. Nat. Biotechnol. 40, 1807–1813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tsuchida, C. A. et al. Mitigation of chromosome loss in clinical CRISPR–Cas9-engineered T cells. Cell 186, 4567–4582 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. He, B. et al. CD8+ T cells utilize highly dynamic enhancer repertoires and regulatory circuitry in response to infections. Immunity 45, 1341–1354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8+ T cell differentiation. Nat. Rev. Immunol. 18, 340–356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Na, E. S., Nelson, E. D., Kavalali, E. T. & Monteggia, L. M. The impact of MeCP2 loss- or gain-of-function on synaptic plasticity. Neuropsychopharmacology 38, 212–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Thivierge, C. et al. Overexpression of PKD1 causes polycystic kidney disease. Mol. Cell. Biol. 26, 1538–1548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rice, A. M. & McLysaght, A. Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat. Commun. 8, 14366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Moss, T. J. & Wallrath, L. L. Connections between epigenetic gene silencing and human disease. Mutat. Res. 618, 163–174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Huang, N., Lee, I., Marcotte, E. M. & Hurles, M. E. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Dang, V. T., Kassahn, K. S., Marcos, A. E. & Ragan, M. A. Identification of human haploinsufficient genes and their genomic proximity to segmental duplications. Eur. J. Hum. Genet. 16, 1350–1357 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18, 631–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Seidner, G. et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood–brain barrier hexose carrier. Nat. Genet. 18, 188–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  163. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Xu, X. et al. Engineered miniature CRISPR–Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Wu, T. et al. An engineered hypercompact CRISPR–Cas12f system with boosted gene-editing activity. Nat. Chem. Biol. 19, 1384–1393 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kim, D. Y. et al. Hypercompact adenine base editors based on transposase B guided by engineered RNA. Nat. Chem. Biol. 18, 1005–1013 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Kwon, J. B., Vankara, A., Ettyreddy, A. R., Bohning, J. D. & Gersbach, C. A. Myogenic progenitor cell lineage specification by CRISPR/Cas9-based transcriptional activators. Stem Cell Rep. 14, 755–769 (2020).

    CAS  Google Scholar 

  168. Rebar, E. J. et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat. Med. 8, 1427–1432 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Sakowski, S. A. et al. Neuroprotection using gene therapy to induce vascular endothelial growth factor-A expression. Gene Ther. 16, 1292–1299 (2009).

    CAS  Google Scholar 

  170. Dai, Q. et al. Engineered zinc finger-activating vascular endothelial growth factor transcription factor plasmid DNA induces therapeutic angiogenesis in rabbits with hindlimb ischemia. Circulation 110, 2467–2475 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. De Jonghe, P. Molecular genetics of Dravet syndrome. Dev. Med. Child Neurol. 53, 7–10 (2011).

    Article  PubMed  Google Scholar 

  173. Colasante, G. et al. dCas9-based Scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in Dravet syndrome mice. Mol. Ther. 28, 235–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Tanenhaus, A. et al. Cell-selective adeno-associated virus-mediated SCN1A gene regulation therapy rescues mortality and seizure phenotypes in a Dravet syndrome mouse model and is well tolerated in nonhuman primates. Hum. Gene Ther. 33, 579–597 (2022).

    CAS  Google Scholar 

  175. Liu, X. S. et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172, 979–992 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Qian, J. et al. Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. Sci. Transl. Med. 15, eadd4666 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Halmai, J. et al. Artificial escape from XCI by DNA methylation editing of the CDKL5 gene. Nucleic Acids Res. 48, 2372–2387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Thakore, P. I. et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR–Cas9 repressors. Nat. Commun. 9, 1674 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Gemberling, M. P. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965–974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Moreno, A. M. et al. In situ gene therapy via AAV–CRISPR–Cas9-mediated targeted gene regulation. Mol. Ther. 26, 1818–1827 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Moreno, A. M. et al. Long-lasting analgesia via targeted in situ repression of NaV1.7 in mice. Sci. Transl. Med. 13, eaay9056 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Liao, H. K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhao, X. et al. Creation of a six-fingered artificial transcription factor that represses the hepatitis B virus HBx gene integrated into a human hepatocellular carcinoma cell line. J. Biomol. Screen. 18, 378–387 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Luo, W. et al. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo. Int. J. Mol. Med. 41, 2169–2176 (2018).

    CAS  PubMed  Google Scholar 

  185. Bloom, K. et al. Inhibition of replication of hepatitis B virus using transcriptional repressors that target the viral DNA. BMC Infect. Dis. 19, 802 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Xirong, L. et al. Hepatitis B virus can be inhibited by DNA methyltransferase 3a via specific zinc-finger-induced methylation of the X promoter. Biochemistry 79, 111–123 (2014).

    CAS  PubMed  Google Scholar 

  187. Bialek, J. K. et al. Targeted HIV-1 latency reversal using CRISPR/Cas9-derived transcriptional activator systems. PLoS ONE 11, e0158294 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Saayman, S. M. et al. Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Mol. Ther. 24, 488–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ji, H. et al. Specific reactivation of latent HIV-1 by dCas9–SunTag–VP64-mediated guide RNA targeting the HIV-1 promoter. Mol. Ther. 24, 508–521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Wang, G. et al. Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nat. Immunol. 20, 1494–1505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Peng, M. et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol. Cancer 18, 128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Chapdelaine, P. et al. Development of an AAV9 coding for a 3XFLAG–TALEfrat#8–VP64 able to increase in vivo the human frataxin in YG8R mice. Gene Ther. 23, 606–614 (2016).

    CAS  Google Scholar 

  193. Tremblay, J. P., Chapdelaine, P., Coulombe, Z. & Rousseau, J. Transcription activator-like effector proteins induce the expression of the frataxin gene. Hum. Gene Ther. 23, 883–890 (2012).

    CAS  Google Scholar 

  194. Erwin, G. S. et al. Synthetic transcription elongation factors license transcription across repressive chromatin. Science 358, 1617–1622 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zeitler, B. et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat. Med. 25, 1131–1142 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Wegmann, S. et al. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Sci. Adv. 7, eabe1611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. O’Geen, H. et al. Transcriptional reprogramming restores UBE3A brain-wide and rescues behavioral phenotypes in an Angelman syndrome mouse model. Mol. Ther. 31, 1088–1105 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Zhou, H. et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9–activator transgenic mice. Nat. Neurosci. 21, 440–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Jia, Y. et al. In vivo CRISPR screening identifies BAZ2 chromatin remodelers as druggable regulators of mammalian liver regeneration. Cell Stem Cell 29, 372–385 (2022).

    CAS  Google Scholar 

  200. Guo, L. Y. et al. Multiplexed genome regulation in vivo with hyper-efficient Cas12a. Nat. Cell Biol. 24, 590–600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Braun, C. J., Adames, A. C., Saur, D. & Rad, R. Tutorial: design and execution of CRISPR in vivo screens. Nat. Protoc. 17, 1903–1925 (2022).

    Article  CAS  PubMed  Google Scholar 

  203. Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. 42, 927–935 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Park, M., Patel, N., Keung, A. J. & Khalil, A. S. Engineering epigenetic regulation using synthetic read–write modules. Cell 176, 227–238 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043–1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hamilton, J. R. et al. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02085-z (2024).

  209. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yilmazer, A., de Lazaro, I., Bussy, C. & Kostarelos, K. In vivo cell reprogramming towards pluripotency by virus-free overexpression of defined factors. PLoS ONE 8, e54754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Beyersdorf, J. P. et al. Robust, durable gene activation in vivo via mRNA-encoded activators. ACS Nano 16, 5660–5671 (2022).

    CAS  Google Scholar 

  213. Gonsalves, R. et al. Severe early onset obesity and hypopituitarism in a child with a novel SIM1 gene mutation. Endocrinol. Diabetes Metab. Case Rep. 2020, 20-0042 (2020).

  214. Ramachandrappa, S. et al. Rare variants in single-minded 1 (SIM1) are associated with severe obesity. J. Clin. Invest. 123, 3042–3050 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Polstein, L. R. et al. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res. 25, 1158–1169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Galonska, C. et al. Genome-wide tracking of dCas9–methyltransferase footprints. Nat. Commun. 9, 597 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Ichikawa, D. M. et al. A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nat. Biotechnol. 41, 1117–1129 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ewen-Campen, B. et al. Optimized strategy for in vivo Cas9-activation in Drosophila. Proc. Natl Acad. Sci. USA 114, 9409–9414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Yamagata, T. et al. CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol. Dis. 141, 104954 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Vora, S. et al. Rational design of a compact CRISPR–Cas9 activator for AAV-mediated delivery. Preprint at bioRxiv https://doi.org/10.1101/298620 (2018).

  221. Kojima, S. et al. Epigenome editing reveals core DNA methylation for imprinting control in the Dlk1-Dio3 imprinted domain. Nucleic Acids Res. 50, 5080–5094 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Xu, X. et al. High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nat. Commun. 9, 3509 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Kim, J. M. et al. Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Res. 43, 8868–8883 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Chiarella, A. M. et al. Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery. Nat. Biotechnol. 38, 50–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  225. Cheng, A. W. et al. Casilio: a versatile CRISPR–Cas9–Pumilio hybrid for gene regulation and genomic labeling. Cell Res. 26, 254–257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Shechner, D. M., Hacisuleyman, E., Younger, S. T. & Rinn, J. L. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat. Methods 12, 664–670 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Carullo, N. V. N. et al. Enhancer RNAs predict enhancer–gene regulatory links and are critical for enhancer function in neuronal systems. Nucleic Acids Res. 48, 9550–9570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Braun, S. M. G. et al. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat. Commun. 8, 560 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Perillo, B., Tramontano, A., Pezone, A. & Migliaccio, A. LSD1: more than demethylation of histone lysine residues. Exp. Mol. Med. 52, 1936–1947 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yeo, N. C. et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kwon, D. Y., Zhao, Y. T., Lamonica, J. M. & Zhou, Z. Locus-specific histone deacetylation using a synthetic CRISPR–Cas9-based HDAC. Nat. Commun. 8, 15315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Raffeiner, P. et al. An MXD1-derived repressor peptide identifies noncoding mediators of MYC-driven cell proliferation. Proc. Natl Acad. Sci. USA 117, 6571–6579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Gersbach laboratory members and collaborators for feedback and helpful discussions. This work was supported by National Institutes of Health grants U01AI146356, UM1HG012053, R01MH125236, R01CA289574 and RM1HG011123, National Science Foundation grant EFMA-1830957, DARPA grant HR0011-19-2-0008, the Foundation for Prader–Willi Research, an Allen Distinguished Investigator Award from the Paul G. Allen Frontiers Group to C.A.G., the Open Philanthropy Project and the Duke–Coulter Translational Partnership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Gersbach.

Ethics declarations

Competing interests

S.R.M., D.R., N.I. and C.A.G. are named inventors on patent applications related to epigenome-engineering technologies. C.A.G. is a cofounder of Tune Therapeutics and Locus Biosciences and is an advisor to Sarepta Therapeutics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCutcheon, S.R., Rohm, D., Iglesias, N. et al. Epigenome editing technologies for discovery and medicine. Nat Biotechnol 42, 1199–1217 (2024). https://doi.org/10.1038/s41587-024-02320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-024-02320-1

  • Springer Nature America, Inc.

Navigation