Skip to main content

Advertisement

Log in

Terahertz control of many-body dynamics in quantum materials

  • Review Article
  • Published:

From Nature Reviews Materials

View current issue Sign up to alerts

Abstract

Quantum-mechanical phenomena underpin the behaviour of quantum materials at the microscopic level. The description of several essential properties of these materials surpasses the generic treatment of electrons as classical non-interacting entities. Owing to the many-body nature of quantum materials, a microscopic understanding of the interactions dictating their ground state is indispensable for acquiring control over their dynamics. Non-equilibrium measurements can characterize such interactions both in time and in space, and the temporal evolution of the relaxation processes after excitation sheds light on the underlying correlations among charge, spin, orbital and lattice degrees of freedom. The energy scales of these interactions fall within the terahertz (THz) range, making THz radiation not only an effective probe but also an ideal tool for non-equilibrium perturbation, and perhaps a future tool for manipulation. In this Review, we survey how THz light has been used to drive quantum materials out of equilibrium and to retrieve information on the associated correlation processes and many-body dynamics. In particular, we show how THz light can induce superconducting-like features in layered superconductors and drive quasiparticles in heavy-fermion systems out of equilibrium. We also provide several examples of phase transitions driven dynamically by pumping correlated systems using THz light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Interaction between THz light and quantum materials.
Fig. 2: Light-induced superconductivity.
Fig. 3: Quasiparticle dynamics at picosecond timescales.
Fig. 4: Terahertz-field-induced phase changes.

Similar content being viewed by others

References

  1. Basov, D. N., Averitt, R. D., Van Der Marel, D., Dressel, M. & Haule, K. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471 (2011).

    CAS  Google Scholar 

  2. Madelung, O. The One-Electron Approximation 17–95 (Springer Berlin Heidelberg, 1978).

  3. Kaxiras, E. The Single-Particle Approximation 42–81 (Cambridge Univ. Press, 2003).

  4. Orenstein, J. Ultrafast spectroscopy of quantum materials. Phys. Today 65, 44–50 (2012).

    CAS  Google Scholar 

  5. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    CAS  Google Scholar 

  6. Cava, R., de Leon, N. & Xie, W. Introduction: quantum materials. Chem. Rev. 121, 2777–2779 (2021).

    CAS  Google Scholar 

  7. Tokura, Y. Quantum materials at the crossroads of strong correlation and topology. Nat. Mater. 21, 971–973 (2022).

    CAS  Google Scholar 

  8. The rise of quantum materials. Nat. Phys. 12, 105 (2016).

  9. Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    CAS  Google Scholar 

  10. Basov, D. N. & Timusk, T. Electrodynamics of high-TC superconductors. Rev. Mod. Phys. 77, 721–779 (2005).

    CAS  Google Scholar 

  11. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Google Scholar 

  12. Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).

    Google Scholar 

  13. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731 (2010).

    Google Scholar 

  14. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 5, 31–34 (2011).

    CAS  Google Scholar 

  15. Scott, J. F. Soft-mode spectroscopy: experimental studies of structural phase transitions. Rev. Mod. Phys. 46, 83–128 (1974).

    CAS  Google Scholar 

  16. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    CAS  Google Scholar 

  17. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    CAS  Google Scholar 

  18. Sirica, N. et al. Tracking ultrafast photocurrents in the Weyl semimetal TaAs using THz emission spectroscopy. Phys. Rev. Lett. 122, 197401 (2019).

    CAS  Google Scholar 

  19. Xu, B. et al. Temperature-tunable Fano resonance induced by strong coupling between Weyl fermions and phonons in TaAs. Nat. Commun. 8, 14933 (2017).

    CAS  Google Scholar 

  20. Sirica, N. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Nat. Mater. 21, 62–66 (2022).

    CAS  Google Scholar 

  21. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics 7, 680–690 (2013).

    CAS  Google Scholar 

  22. Hafez, H. A. et al. Intense terahertz radiation and their applications. J. Opt. 18, 093004 (2016).

    Google Scholar 

  23. Reimann, K. Table-top sources of ultrashort THz pulses. Rep. Prog. Phys. 70, 1597–1632 (2007).

    Google Scholar 

  24. Blanchard, F. et al. Generation of intense terahertz radiation via optical methods. IEEE J. Sel. Top. Quantum Electron. 17, 5–16 (2011).

    CAS  Google Scholar 

  25. Löffler, T., Hahn, T., Thomson, M., Jacob, F. & Roskos, H. G. Large-area electro-optic ZnTe terahertz emitters. Opt. Express 13, 5353–5362 (2005).

    Google Scholar 

  26. Nahata, A., Weling, A. S. & Heinz, T. F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl. Phys. Lett. 69, 2321–2323 (1996).

    CAS  Google Scholar 

  27. Drs, J. et al. Optical rectification of ultrafast Yb lasers: pushing power and bandwidth of terahertz generation in gap. J. Opt. Soc. Am. B 36, 3039–3045 (2019).

    CAS  Google Scholar 

  28. Hebling, J., Stepanov, A., Almási, G., Bartal, B. & Kuhl, J. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl. Phys. B 78, 593–599 (2004).

    CAS  Google Scholar 

  29. Huang, S.-W. et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Opt. Lett. 38, 796–798 (2013).

    CAS  Google Scholar 

  30. Hauri, C. P., Ruchert, C., Vicario, C. & Ardana, F. Strong-field single-cycle THz pulses generated in an organic crystal. Appl. Phys. Lett. 99, 161116 (2011).

    Google Scholar 

  31. Vicario, C. et al. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr: Mg2SiO4 laser. Opt. Lett. 39, 6632–6635 (2014).

    CAS  Google Scholar 

  32. Hamster, H., Sullivan, A., Gordon, S., White, W. & Falcone, R. W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 2725–2728 (1993).

    CAS  Google Scholar 

  33. Hamster, H., Sullivan, A., Gordon, S. & Falcone, R. W. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys. Rev. E 49, 671–677 (1994).

    CAS  Google Scholar 

  34. Gallot, G. & Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 16, 1204–1212 (1999).

    CAS  Google Scholar 

  35. Wu, Q. & Zhang, X. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995).

    CAS  Google Scholar 

  36. Dai, J., Xie, X. & Zhang, X.-C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 97, 103903 (2006).

    Google Scholar 

  37. Karpowicz, N. et al. Coherent heterodyne time-domain spectrometry covering the entire ‘terahertz gap’. Appl. Phys. Lett. 92, 011131 (2008).

    Google Scholar 

  38. Ho, I.-C., Guo, X. & Zhang, X.-C. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Opt. Express 18, 2872–2883 (2010).

    CAS  Google Scholar 

  39. Liu, B. et al. Pump frequency resonances for light-induced incipient superconductivity in YBa2Cu3O6.5. Phys. Rev. X 10, 011053 (2020).

    CAS  Google Scholar 

  40. Basov, D. N., Timusk, T., Dabrowski, B. & Jorgensen, J. D. c-Axis response of YBa2Cu4O8: a pseudogap and possibility of Josephson coupling of CuO2 planes. Phys. Rev. B 50, 3511–3514 (1994).

    CAS  Google Scholar 

  41. Tajima, S., Noda, T., Eisaki, H. & Uchida, S. c-Axis optical response in the static stripe ordered phase of the cuprates. Phys. Rev. Lett. 86, 500–503 (2001).

    CAS  Google Scholar 

  42. Gabriele, F., Udina, M. & Benfatto, L. Non-linear terahertz driving of plasma waves in layered cuprates. Nat. Commun. 12, 752 (2021).

    CAS  Google Scholar 

  43. Laplace, Y. & Cavalleri, A. Josephson plasmonics in layered superconductors. Adv. Phys. X 1, 387–411 (2016).

    CAS  Google Scholar 

  44. Budden, M. et al. Evidence for metastable photo-induced superconductivity in K3C60. Nat. Phys. 17, 611–618 (2021).

    CAS  Google Scholar 

  45. Bilbro, L. et al. Temporal correlations of superconductivity above the transition temperature in La2−xSrxCuO4 probed by terahertz spectroscopy. Nat. Phys. 7, 298–302 (2011).

    CAS  Google Scholar 

  46. Kaindl, R. A. et al. Ultrafast mid-infrared response of YBa2Cu3O7−δ. Science 287, 470–473 (2000).

    CAS  Google Scholar 

  47. Dienst, A. et al. Optical excitation of Josephson plasma solitons in a cuprate superconductor. Nat. Mater. 12, 535–541 (2013).

    CAS  Google Scholar 

  48. Rajasekaran, S. et al. Parametric amplification of a superconducting plasma wave. Nat. Phys. 12, 1012–1016 (2016).

    CAS  Google Scholar 

  49. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    CAS  Google Scholar 

  50. Kaiser, S. et al. Optically induced coherent transport far above TC in underdoped YBa2Cu3O6+δ. Phys. Rev. B 89, 184516 (2014).

    Google Scholar 

  51. Hu, W. et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nat. Mater. 13, 705–711 (2014).

    CAS  Google Scholar 

  52. Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    CAS  Google Scholar 

  53. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    CAS  Google Scholar 

  54. Cantaluppi, A. et al. Pressure tuning of light-induced superconductivity in K3C60. Nat. Phys. 14, 837–841 (2018).

    CAS  Google Scholar 

  55. Buzzi, M. et al. Photomolecular high-temperature superconductivity. Phys. Rev. X 10, 031028 (2020).

    CAS  Google Scholar 

  56. Buzzi, M. et al. Phase diagram for light-induced superconductivity in κ-(ET)2-x. Phys. Rev. Lett. 127, 197002 (2021).

    CAS  Google Scholar 

  57. Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016).

    CAS  Google Scholar 

  58. de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

    Google Scholar 

  59. Buzzi, M. et al. Higgs-mediated optical amplification in a nonequilibrium superconductor. Phys. Rev. X 11, 011055 (2021).

    CAS  Google Scholar 

  60. Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Google Scholar 

  61. Fujita, M., Goka, H., Yamada, K. & Matsuda, M. Competition between charge- and spin-density-wave order and superconductivity in La1.875Ba0.125−xSrxCuO4. Phys. Rev. Lett. 88, 167008 (2002).

    CAS  Google Scholar 

  62. Fink, J. et al. Phase diagram of charge order in La1.8−xEu0.2SrxCuO4 from resonant soft X-ray diffraction. Phys. Rev. B 83, 092503 (2011).

    Google Scholar 

  63. Klauss, H.-H. et al. From antiferromagnetic order to static magnetic stripes: the phase diagram of (La, Eu)2−xSrxCuO4. Phys. Rev. Lett. 85, 4590–4593 (2000).

    CAS  Google Scholar 

  64. Nicoletti, D. et al. Optically induced superconductivity in striped La2−xBaxCuO4 by polarization-selective excitation in the near infrared. Phys. Rev. B 90, 100503 (2014).

    Google Scholar 

  65. Nicoletti, D. et al. Magnetic-field tuning of light-induced superconductivity in striped La2−xBaxCuO4. Phys. Rev. Lett. 121, 267003 (2018).

    CAS  Google Scholar 

  66. Cremin, K. A. et al. Photoenhanced metastable c-axis electrodynamics in stripe-ordered cuprate La1.885Ba0.115CuO4. Proc. Natl Acad. Sci. USA 116, 19875–19879 (2019).

    CAS  Google Scholar 

  67. Casandruc, E. et al. Wavelength-dependent optical enhancement of superconducting interlayer coupling in La1.885Ba0.115CuO4. Phys. Rev. B 91, 174502 (2015).

    Google Scholar 

  68. Zhang, S. J. et al. Light-induced new collective modes in the superconductor La1.905Ba0.095CuO4. Phys. Rev. B 98, 020506 (2018).

    CAS  Google Scholar 

  69. Homes, C. C., Timusk, T., Bonn, D. A., Liang, R. & Hardy, W. N. Optical phonons polarized along the c-axis of YBa2Cu3O6+x, for x = 0.5 → 0.95. Can. J. Phys. 73, 663–675 (1995).

    CAS  Google Scholar 

  70. Hunt, C. R. et al. Dynamical decoherence of the light induced interlayer coupling in YBa2Cu3O6+δ. Phys. Rev. B 94, 224303 (2016).

    Google Scholar 

  71. Mankowsky, R. et al. Coherent modulation of the YBa2Cu3O6+x atomic structure by displacive stimulated ionic Raman scattering. Phys. Rev. B 91, 094308 (2015).

    Google Scholar 

  72. Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron–phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 (2018).

    CAS  Google Scholar 

  73. Schlawin, F., Cavalleri, A. & Jaksch, D. Cavity-mediated electron–photon superconductivity. Phys. Rev. Lett. 122, 133602 (2019).

    CAS  Google Scholar 

  74. Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 (2019).

    CAS  Google Scholar 

  75. Gao, H., Schlawin, F., Buzzi, M., Cavalleri, A. & Jaksch, D. Photoinduced electron pairing in a driven cavity. Phys. Rev. Lett. 125, 053602 (2020).

    CAS  Google Scholar 

  76. Thomas, A. et al. Exploring superconductivity under strong coupling with the vacuum electromagnetic field. Preprint at https://doi.org/10.48550/arXiv.1911.01459 (2019).

  77. Curtis, J. B. et al. Cavity magnon–polaritons in cuprate parent compounds. Phys. Rev. Res. 4, 013101 (2022).

    CAS  Google Scholar 

  78. Juraschek, D. M., Neuman, T., Flick, J. & Narang, P. Cavity control of nonlinear phononics. Phys. Rev. Res. 3, L032046 (2021).

    CAS  Google Scholar 

  79. Schlawin, F., Kennes, D. M. & Sentef, M. A. Cavity quantum materials. Appl. Phys. Rev. 9, 011312 (2022).

    CAS  Google Scholar 

  80. Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021).

    Google Scholar 

  81. Li, J., Yang, C.-J., Mondal, R., Tzschaschel, C. & Pal, S. A perspective on nonlinearities in coherent magnetization dynamics. Appl. Phys. Lett. 120, 050501 (2022).

    CAS  Google Scholar 

  82. Okimoto, Y., Katsufuji, T., Ishikawa, T., Arima, T. & Tokura, Y. Variation of electronic structure in La1−xSrxMnO3 (0 ⩽ x ⩽ 0.3) as investigated by optical conductivity spectra. Phys. Rev. B 55, 4206–4214 (1997).

    CAS  Google Scholar 

  83. Juraschek, D. M., Fechner, M. & Spaldin, N. A. Ultrafast structure switching through nonlinear phononics. Phys. Rev. Lett. 118, 054101 (2017).

    CAS  Google Scholar 

  84. Mankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).

    CAS  Google Scholar 

  85. Shimano, R. & Tsuji, N. Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11, 103–124 (2020).

    CAS  Google Scholar 

  86. Matsunaga, R. & Shimano, R. Nonlinear terahertz spectroscopy of Higgs mode in s-wave superconductors. Phys. Scr. 92, 024003 (2017).

    Google Scholar 

  87. Werdehausen, D. et al. Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5. Sci. Adv. 4, eaap8652 (2018).

    Google Scholar 

  88. Schwarz, L. et al. Classification and characterization of nonequilibrium Higgs modes in unconventional superconductors. Nat. Commun. 11, 287 (2020).

    CAS  Google Scholar 

  89. Chu, H. et al. Phase-resolved Higgs response in superconducting cuprates. Nat. Commun. 11, 1793 (2020).

    CAS  Google Scholar 

  90. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    CAS  Google Scholar 

  91. Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation. Phys. Rev. Lett. 111, 057002 (2013).

    Google Scholar 

  92. Matsunaga, R. et al. Polarization-resolved terahertz third-harmonic generation in a single-crystal superconductor NbN: dominance of the Higgs mode beyond the BCS approximation. Phys. Rev. B 96, 020505 (2017).

    Google Scholar 

  93. Katsumi, K. et al. Higgs mode in the d-wave superconductor Bi2Sr2CaCu2O8+x driven by an intense terahertz pulse. Phys. Rev. Lett. 120, 117001 (2018).

    CAS  Google Scholar 

  94. Sooryakumar, R. & Klein, M. V. Raman scattering by superconducting-gap excitations and their coupling to charge–density waves. Phys. Rev. Lett. 45, 660–662 (1980).

    CAS  Google Scholar 

  95. Littlewood, P. B. & Varma, C. M. Amplitude collective modes in superconductors and their coupling to charge–density waves. Phys. Rev. B 26, 4883–4893 (1982).

    CAS  Google Scholar 

  96. Méasson, M.-A. et al. Amplitude Higgs mode in the 2H−NbSe2 superconductor. Phys. Rev. B 89, 060503 (2014).

    Google Scholar 

  97. Nakamura, S., Katsumi, K., Terai, H. & Shimano, R. Nonreciprocal terahertz second-harmonic generation in superconducting NbN under supercurrent injection. Phys. Rev. Lett. 125, 097004 (2020).

    CAS  Google Scholar 

  98. Nakamura, S. et al. Infrared activation of the Higgs mode by supercurrent injection in superconducting NbN. Phys. Rev. Lett. 122, 257001 (2019).

    CAS  Google Scholar 

  99. Moor, A., Volkov, A. F. & Efetov, K. B. Amplitude Higgs mode and admittance in superconductors with a moving condensate. Phys. Rev. Lett. 118, 047001 (2017).

    Google Scholar 

  100. Yang, X. et al. Lightwave-driven gapless superconductivity and forbidden quantum beats by terahertz symmetry breaking. Nat. Photonics 13, 707–713 (2019).

    CAS  Google Scholar 

  101. Katsumi, K., Li, Z. Z., Raffy, H., Gallais, Y. & Shimano, R. Superconducting fluctuations probed by the Higgs mode in Bi2Sr2CaCu2O8+x thin films. Phys. Rev. B 102, 054510 (2020).

    CAS  Google Scholar 

  102. Chu, H. et al. Fano interference between collective modes in cuprate high-TC superconductors. Nat. Commun. 14, 1343 (2023).

    Google Scholar 

  103. Feng, L. et al. Dynamical interplay between superconductivity and charge−density−wave: a nonlinear terahertz study of coherently-driven 2H−NbSe2 and La2−xSrxCuO4. Preprint at https://arXiv.org/abs/2211.10947 (2022).

  104. Katsumi, K. et al. Absence of the superconducting collective excitations in the photoexcited nonequilibrium state of underdoped YBa2Cu3Oy. Preprint at https://arXiv.org/abs/2209.01633 (2022).

  105. Mootz, M., Luo, L., Wang, J. & Perakis, lE. Visualization and quantum control of light-accelerated condensates by terahertz multi-dimensional coherent spectroscopy. Commun. Phys. 5, 47 (2022).

    Google Scholar 

  106. Luo, L. et al. Quantum coherence tomography of light-controlled superconductivity. Nat. Phys. https://doi.org/10.1038/s41567-022-01827-1 (2022).

  107. Yuan, J. Y. et al. Revealing strong coupling of collective modes between superconductivity and pseudogap in cuprate superconductor by terahertz third harmonic generation. Preprint at https://arXiv.org/abs/2211.06961 (2022).

  108. Schoenes, J., Schönenberger, C., Franse, J. J. M. & Menovsky, A. A. Hall-effect and resistivity study of the heavy-fermion system URu2Si2. Phys. Rev. B 35, 5375–5378 (1987).

    CAS  Google Scholar 

  109. Taupin, M. & Paschen, S. Are heavy fermion strange metals Planckian? Crystals 12, 251 (2022).

    CAS  Google Scholar 

  110. Seo, S. et al. Ce site dilution effects in the antiferromagnetic heavy fermion CeIn3. Phys. Rev. Mater. 6, 044803 (2022).

    CAS  Google Scholar 

  111. Kang, B., Choi, S. & Kim, H. Orbital selective Kondo effect in heavy fermion superconductor UTe2. npj Quantum Mater. 7, 64 (2022).

    CAS  Google Scholar 

  112. Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

    CAS  Google Scholar 

  113. Fulde, P., Keller, J. & Zwicknagl, G. in Solid State Physics Vol. 41, 1–150 (Academic Press, 1988).

  114. Lashley, J. C. et al. Experimental electronic heat capacities of α- and δ-plutonium: heavy-Fermion physics in an element. Phys. Rev. Lett. 91, 205901 (2003).

    CAS  Google Scholar 

  115. Ye, H. Q. et al. Magnetic properties of the layered heavy-fermion antiferromagnet CePdGa6. Phys. Rev. B 105, 014405 (2022).

    CAS  Google Scholar 

  116. Si, Q. & Steglich, F. Heavy fermions and quantum phase transitions. Science 329, 1161–1166 (2010).

    CAS  Google Scholar 

  117. Seiro, S. et al. Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal. Nat. Commun. 9, 3324 (2018).

    CAS  Google Scholar 

  118. Scheffler, M. et al. Terahertz conductivity of the heavy-fermion state in CeCoIn5. J. Phys. Soc. Jpn. 82, 043712 (2013).

    Google Scholar 

  119. Bossé, G. et al. Anomalous frequency and temperature-dependent scattering and Hund’s coupling in the almost quantum critical heavy-fermion system CeFe2Ge2. Phys. Rev. B 93, 085104 (2016).

    Google Scholar 

  120. Zhang, J., Yong, J., Takeuchi, I., Greene, R. L. & Averitt, R. D. Ultrafast terahertz spectroscopy study of a Kondo insulating thin-film SmB6: evidence for an emergent surface state. Phys. Rev. B 97, 155119 (2018).

    CAS  Google Scholar 

  121. Phanindra, V. E., Agarwal, P. & Rana, D. S. Terahertz spectroscopic evidence of non-Fermi-liquid-like behavior in structurally modulated PrNiO3 thin films. Phys. Rev. Mater. 2, 015001 (2018).

    CAS  Google Scholar 

  122. Ostertag, J. P., Scheffler, M., Dressel, M. & Jourdan, M. Terahertz conductivity of the heavy-fermion compound UNi2Al3. Phys. Rev. B 84, 035132 (2011).

    Google Scholar 

  123. Scheffler, M. et al. Microwave spectroscopy on heavy-fermion systems: probing the dynamics of charges and magnetic moments. Phys. Status Sol. B 250, 439–449 (2013).

    CAS  Google Scholar 

  124. Pracht, U. S. et al. Charge carrier dynamics of the heavy-fermion metal CeCoIn5 probed by THz spectroscopy. J. Magn. Magn. Mater. 400, 31–35 (2016).

    CAS  Google Scholar 

  125. Wetli, C. et al. Time-resolved collapse and revival of the Kondo state near a quantum phase transition. Nat. Phys. 14, 1103–1107 (2018).

    CAS  Google Scholar 

  126. Pal, S. et al. Fermi volume evolution and crystal-field excitations in heavy-fermion compounds probed by time-domain terahertz spectroscopy. Phys. Rev. Lett. 122, 096401 (2019).

    CAS  Google Scholar 

  127. Yang, C.-J. et al. Terahertz conductivity of heavy-fermion systems from time-resolved spectroscopy. Phys. Rev. Res. 2, 033296 (2020).

    CAS  Google Scholar 

  128. Yang, C.-J. et al. Critical slowing down of fermions near a magnetic quantum phase transition. Preprint at https://arXiv.org/abs/2208.05932 (2022).

  129. Prochaska, L. et al. Singular charge fluctuations at a magnetic quantum critical point. Science 367, 285–288 (2020).

    CAS  Google Scholar 

  130. McMillan, W. L. Landau theory of charge–density waves in transition-metal dichalcogenides. Phys. Rev. B 12, 1187–1196 (1975).

    CAS  Google Scholar 

  131. Steglich, F. & Wirth, S. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics. Rep. Prog. Phys. 79, 084502 (2016).

    Google Scholar 

  132. Coleman, P. & Nevidomskyy, A. H. Frustration and the Kondo effect in heavy fermion materials. J. Low Temp. Phys. 161, 182–202 (2010).

    CAS  Google Scholar 

  133. Löhneysen, H. V. et al. Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. Phys. Rev. Lett. 72, 3262–3265 (1994).

    Google Scholar 

  134. Steglich, F. et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43, 1892–1896 (1979).

    CAS  Google Scholar 

  135. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    CAS  Google Scholar 

  136. Stockert, O. & Steglich, F. Unconventional quantum criticality in heavy-fermion compounds. Annu. Rev. Condens. Matter Phys. 2, 79–99 (2011).

    CAS  Google Scholar 

  137. Custers, J. et al. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6. Nat. Mater. 11, 189–194 (2012).

    CAS  Google Scholar 

  138. Friedemann, S. et al. Detaching the antiferromagnetic quantum critical point from the fermi-surface reconstruction in YbRh2Si2. Nat. Phys. 5, 465–469 (2009).

    CAS  Google Scholar 

  139. Degiorgi, L. The electrodynamic response of heavy-electron compounds. Rev. Mod. Phys. 71, 687–734 (1999).

    CAS  Google Scholar 

  140. Kimura, S.-I, Kwon, Y. S., Krellner, C. & Sichelschmidt, J. Optical evidence of local and itinerant states in Ce- and Yb-heavy-fermion compounds. Electron. Struct. 3, 024007 (2021).

    CAS  Google Scholar 

  141. Kimura, S.-i & Okamura, H. Infrared and terahertz spectroscopy of strongly correlated electron systems under extreme conditions. J. Phys. Soc. Jpn. 82, 021004 (2012).

    Google Scholar 

  142. Maple, M. B. et al. Non Fermi liquid behavior in strongly correlated f-electron materials. J. Low Temp. Phys. 95, 225–243 (1994).

    CAS  Google Scholar 

  143. Si, Q., Rabello, S., Ingersent, K. & Smith, J. L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).

    CAS  Google Scholar 

  144. Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

    Google Scholar 

  145. Coleman, P., Pépin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, R723–R738 (2001).

    CAS  Google Scholar 

  146. Si, Q. et al. Kondo destruction and quantum criticality in Kondo lattice systems. J. Phys. Soc. Jpn. 83, 061005 (2014).

    Google Scholar 

  147. Kummer, K. et al. Temperature-independent Fermi surface in the Kondo lattice YbRh2Si2. Phys. Rev. X 5, 011028 (2015).

    Google Scholar 

  148. Ehm, D. et al. High-resolution photoemission study on low-TCe systems: Kondo resonance, crystal field structures, and their temperature dependence. Phys. Rev. B 76, 045117 (2007).

    Google Scholar 

  149. Kroha, J. et al. Structure and transport in multi-orbital Kondo systems. Phys. E: Low-Dimens. Syst. Nanostruct. 18, 69–72 (2003).

    CAS  Google Scholar 

  150. Salén, P. et al. Matter manipulation with extreme terahertz light: progress in the enabling THz technology. Phys. Rep. 836–837, 1–74 (2019).

    Google Scholar 

  151. Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    CAS  Google Scholar 

  152. Nova, T., Disa, A., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    CAS  Google Scholar 

  153. Kozina, M. et al. Terahertz-driven phonon upconversion in SrTiO3. Nat. Phys. 15, 387–392 (2019).

    CAS  Google Scholar 

  154. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    CAS  Google Scholar 

  155. Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 562, 396–400 (2018).

    CAS  Google Scholar 

  156. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    CAS  Google Scholar 

  157. Cavalleri, A. et al. Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption. Phys. Rev. Lett. 95, 067405 (2005).

    CAS  Google Scholar 

  158. Hilton, D. J. et al. Enhanced photosusceptibility near TC for the light-induced insulator-to-metal phase transition in vanadium dioxide. Phys. Rev. Lett. 99, 226401 (2007).

    CAS  Google Scholar 

  159. Fiebig, M., Miyano, K., Tomioka, Y. & Tokura, Y. Visualization of the local insulator–metal transition in Pr0.7Ca0.3MnO3. Science 280, 1925–1928 (1998).

    CAS  Google Scholar 

  160. Averitt, R. D. et al. Ultrafast conductivity dynamics in colossal magnetoresistance manganites. Phys. Rev. Lett. 87, 017401 (2001).

    CAS  Google Scholar 

  161. Polli, D. et al. Coherent orbital waves in the photo-induced insulator–metal dynamics of a magnetoresistive manganite. Nat. Mater. 6, 643–647 (2007).

    CAS  Google Scholar 

  162. Ichikawa, H. et al. Transient photoinduced ‘hidden’ phase in a manganite. Nat. Mater. 10, 101–105 (2011).

    CAS  Google Scholar 

  163. Masuda, R., Kaneko, Y., Tokura, Y. & Takahashi, Y. Electric field control of natural optical activity in a multiferroic helimagnet. Science 372, 496–500 (2021).

    CAS  Google Scholar 

  164. Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

    CAS  Google Scholar 

  165. Walowski, J. & Münzenberg, M. Perspective: ultrafast magnetism and THz spintronics. J. Appl. Phys. 120, 140901 (2016).

    Google Scholar 

  166. Siegrist, F. et al. Light-wave dynamic control of magnetism. Nature 571, 240–244 (2019).

    CAS  Google Scholar 

  167. Juraschek, D. M. & Narang, P. Magnetic control in the terahertz. Science 374, 1555–1556 (2021).

    CAS  Google Scholar 

  168. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    CAS  Google Scholar 

  169. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

    CAS  Google Scholar 

  170. Kuehn, W., Reimann, K., Woerner, M., Elsaesser, T. & Hey, R. Two-dimensional terahertz correlation spectra of electronic excitations in semiconductor quantum wells. J. Phys. Chem. B 115, 5448–5455 (2011).

    CAS  Google Scholar 

  171. Woerner, M., Kuehn, W., Bowlan, P., Reimann, K. & Elsaesser, T. Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids. New J. Phys. 15, 025039 (2013).

    CAS  Google Scholar 

  172. Folpini, G. et al. Nonresonant coherent control: intersubband excitations manipulated by a nonresonant terahertz pulse. Phys. Rev. B 92, 085306 (2015).

    Google Scholar 

  173. Somma, C., Folpini, G., Reimann, K., Woerner, M. & Elsaesser, T. Two-phonon quantum coherences in indium antimonide studied by nonlinear two-dimensional terahertz spectroscopy. Phys. Rev. Lett. 116, 177401 (2016).

    Google Scholar 

  174. Folpini, G. et al. Strong local-field enhancement of the nonlinear soft-mode response in a molecular crystal. Phys. Rev. Lett. 119, 097404 (2017).

    Google Scholar 

  175. Houver, S., Huber, L., Savoini, M., Abreu, E. & Johnson, S. L. 2D THz spectroscopic investigation of ballistic conduction-band electron dynamics in InSb. Opt. Express 27, 10854–10865 (2019).

    CAS  Google Scholar 

  176. Raab, J. et al. Ultrafast two-dimensional field spectroscopy of terahertz intersubband saturable absorbers. Opt. Express 27, 2248–2257 (2019).

    CAS  Google Scholar 

  177. Pal, S. et al. Origin of terahertz soft-mode nonlinearities in ferroelectric perovskites. Phys. Rev. X 11, 021023 (2021).

    CAS  Google Scholar 

  178. Markmann, S. et al. Two-dimensional spectroscopy on a THz quantum cascade structure. Nanophotonics 10, 171–180 (2021).

    CAS  Google Scholar 

  179. Dunnett, K., Narayan, A., Spaldin, N. A. & Balatsky, A. V. Strain and ferroelectric soft-mode induced superconductivity in strontium titanate. Phys. Rev. B 97, 144506 (2018).

    CAS  Google Scholar 

  180. Kedem, Y. Novel pairing mechanism for superconductivity at a vanishing level of doping driven by critical ferroelectric modes. Phys. Rev. B 98, 220505 (2018).

    CAS  Google Scholar 

  181. van der Marel, D., Barantani, F. & Rischau, C. W. Possible mechanism for superconductivity in doped SrTiO3. Phys. Rev. Res. 1, 013003 (2019).

    Google Scholar 

  182. Zhitomirsky, M. E. & Chernyshev, A. L. Instability of antiferromagnetic magnons in strong fields. Phys. Rev. Lett. 82, 4536–4539 (1999).

    CAS  Google Scholar 

  183. Syljuåsen, O. F. Numerical evidence for unstable magnons at high fields in the Heisenberg antiferromagnet on the square lattice. Phys. Rev. B 78, 180413 (2008).

    Google Scholar 

  184. Vaswani, C. et al. Light-driven Raman coherence as a nonthermal route to ultrafast topology switching in a dirac semimetal. Phys. Rev. X 10, 021013 (2020).

    CAS  Google Scholar 

  185. Xiao, Z., Wang, J., Liu, X., Assaf, B. A. & Burghoff, D. Optical-pump terahertz-probe spectroscopy of the topological crystalline insulator \({{\rm{Pb}}}_{1-x}{{\rm{Sn}}}_{x}{\rm{Se}}\) through the topological phase transition. ACS Photonics 9, 765 (2022).

  186. Valdés Aguilar, R. et al. Time-resolved terahertz dynamics in thin films of the topological insulator Bi2Se3. Appl. Phys. Lett. 106, 011901 (2015).

    Google Scholar 

  187. Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2022).

    Google Scholar 

  188. Mrudul, M. S., Álvaro, J.-G., Ivanov, M. & Dixit, G. Light-induced valleytronics in pristine graphene. Optica 8, 422–427 (2021).

    Google Scholar 

  189. Luo, L. et al. A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5. Nat. Mater. 20, 329–334 (2021).

    CAS  Google Scholar 

  190. Yang, X. et al. Light control of surface–bulk coupling by terahertz vibrational coherence in a topological insulator. npj Quantum Mater. 5, 13 (2020).

    CAS  Google Scholar 

  191. Park, B. C. et al. Terahertz single conductance quantum and topological phase transitions in topological insulator Bi2Se3 ultrathin films. Nat. Commun. 6, 6552 (2015).

    CAS  Google Scholar 

  192. Bodenthin, Y. et al. Manipulating the magnetic structure with electric fields in multiferroic ErMn2O5. Phys. Rev. Lett. 100, 027201 (2008).

    CAS  Google Scholar 

  193. Yamasaki, Y. et al. Electric control of spin helicity in a magnetic ferroelectric. Phys. Rev. Lett. 98, 147204 (2007).

    CAS  Google Scholar 

  194. Choi, Y. J., Zhang, C. L., Lee, N. & Cheong, S.-W. Cross-control of magnetization and polarization by electric and magnetic fields with competing multiferroic and weak-ferromagnetic phases. Phys. Rev. Lett. 105, 097201 (2010).

    CAS  Google Scholar 

  195. Leo, N. et al. Magnetoelectric inversion of domain patterns. Nature 560, 466–470 (2018).

    CAS  Google Scholar 

  196. Hassanpour, E. et al. Magnetoelectric transfer of a domain pattern. Science 377, 1109–1112 (2022).

    CAS  Google Scholar 

  197. Hoffmann, T., Thielen, P., Becker, P., Bohatý, L. & Fiebig, M. Time-resolved imaging of magnetoelectric switching in multiferroic MnWO4. Phys. Rev. B 84, 184404 (2011).

    Google Scholar 

  198. Johnson, S. L. et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 037203 (2012).

    CAS  Google Scholar 

  199. Pimenov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2, 97–100 (2006).

    CAS  Google Scholar 

  200. Pimenov, A. et al. Coupling of phonons and electromagnons in GdMnO3. Phys. Rev. B 74, 100403 (2006).

    Google Scholar 

  201. Sushkov, A. B., Aguilar, R. V., Park, S., Cheong, S.-W. & Drew, H. D. Electromagnons in multiferroic YMn2O5 and TbMn2O5. Phys. Rev. Lett. 98, 027202 (2007).

    CAS  Google Scholar 

  202. Katsura, H., Balatsky, A. V. & Nagaosa, N. Dynamical magnetoelectric coupling in helical magnets. Phys. Rev. Lett. 98, 027203 (2007).

    Google Scholar 

  203. Shuvaev, A. M., Travkin, V. D., Ivanov, V. Y., Mukhin, A. A. & Pimenov, A. Evidence for electroactive excitation of the spin cycloid in TbMnO3. Phys. Rev. Lett. 104, 097202 (2010).

    CAS  Google Scholar 

  204. Juraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mater. 1, 014401 (2017).

    Google Scholar 

  205. Juraschek, D. M. & Spaldin, N. A. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).

    CAS  Google Scholar 

  206. Basini, M. et al. Terahertz electric-field driven dynamical multiferroicity in SrTiO3. Preprint at https://arXiv.org/abs/2210.01690 (2022).

  207. Knighton, B. E. et al. in 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) https://doi.org/10.1109/IRMMW-THz46771.2020.9370699 (IEEE, 2020).

  208. Padmanabhan, P. et al. Coherent helicity-dependent spin–phonon oscillations in the ferromagnetic van der Waals crystal CrI3. Nat. Commun. 13, 4473 (2022).

    CAS  Google Scholar 

  209. Kanoda, K. & Kato, R. Mott physics in organic conductors with triangular lattices. Annu. Rev. Condens. Matter Phys. 2, 167–188 (2011).

    CAS  Google Scholar 

  210. Lupi, S. et al. A microscopic view on the Mott transition in chromium-doped V2O3. Nat. Commun. 6, 105 (2010).

    Google Scholar 

  211. Gavriliuk, A. G., Trojan, I. A. & Struzhkin, V. V. Insulator–metal transition in highly compressed NiO. Phys. Rev. Lett. 109, 086402 (2012).

    Google Scholar 

  212. Gray, A. X. et al. Correlation-driven insulator–metal transition in near-ideal vanadium dioxide films. Phys. Rev. Lett. 116, 116403 (2016).

    CAS  Google Scholar 

  213. Gray, A. X. et al. Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide. Phys. Rev. B 98, 045104 (2018).

    CAS  Google Scholar 

  214. Diener, P. et al. How a dc electric field drives Mott insulators out of equilibrium. Phys. Rev. Lett. 121, 016601 (2018).

    CAS  Google Scholar 

  215. Abreu, E. et al. in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) https://doi.org/10.1109/IRMMW-THz.2019.8874120 (IEEE, 2019).

  216. Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal–insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011).

    CAS  Google Scholar 

  217. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    CAS  Google Scholar 

  218. Rehler, N. E. & Eberly, J. H. Superradiance. Phys. Rev. A 3, 1735–1751 (1971).

    Google Scholar 

  219. Masson, S. J. & Asenjo-Garcia, A. Universality of Dicke superradiance in arrays of quantum emitters. Nat. Commun. 13, 2285 (2022).

    CAS  Google Scholar 

  220. Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).

    Google Scholar 

  221. Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).

    Google Scholar 

  222. Fauseweh, B. & Zhu, J.-X. Laser pulse driven control of charge and spin order in the two-dimensional Kondo lattice. Phys. Rev. B 102, 165128 (2020).

    CAS  Google Scholar 

  223. Zhu, W., Fauseweh, B., Chacon, A. & Zhu, J.-X. Ultrafast laser-driven many-body dynamics and Kondo coherence collapse. Phys. Rev. B 103, 224305 (2021).

    CAS  Google Scholar 

  224. Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

    Google Scholar 

  225. Zong, A., Nebgen, B. R., Lin, S.-C., Spies, J. A. & Zuerch, M. Emerging ultrafast techniques for studying quantum materials. Nat. Rev. Mater. 8, 224–240 (2023).

    Google Scholar 

  226. Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).

    CAS  Google Scholar 

  227. Cowan, M. L. et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202 (2005).

    CAS  Google Scholar 

  228. Zürch, M. et al. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium. Nat. Commun. 8, 15734 (2017).

    Google Scholar 

  229. Chen, Z. et al. Ultrafast multi-cycle terahertz measurements of the electrical conductivity in strongly excited solids. Nat. Commun. 12, 1638 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

C.-J.Y. and M.F. acknowledge the financial support from NCCR MUST via No. PSP 1-003448-051. J.L. and M.F. acknowledge the support from the Swiss National Science Foundation under Project No. 200021_178825. S.P. acknowledges the start-up support from DAE through NISER and SERB through SERB-SRG via Project No. SRG/2022/000290. In addition, S.P. also acknowledges the support from DAE through the project Basic Research in Physical and Multidisciplinary Sciences via RIN4001. The authors acknowledge J. Kroha, N. A. Spaldin, D. Juraschek, A.K. Nandy, K. Saha and A. Mukherjee for the stimulating discussions on the subject matter.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Manfred Fiebig or Shovon Pal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Michael Sentef and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CJ., Li, J., Fiebig, M. et al. Terahertz control of many-body dynamics in quantum materials. Nat Rev Mater 8, 518–532 (2023). https://doi.org/10.1038/s41578-023-00566-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00566-w

  • Springer Nature Limited

This article is cited by

Navigation