Skip to main content

Advertisement

Log in

Genome-scale models in human metabologenomics

  • Review Article
  • Published:

From Nature Reviews Genetics

View current issue Sign up to alerts

Abstract

Metabologenomics integrates metabolomics with other omics data types to comprehensively study the genetic and environmental factors that influence metabolism. These multi-omics data can be incorporated into genome-scale metabolic models (GEMs), which are highly curated knowledge bases that explicitly account for genes, transcripts, proteins and metabolites. By including all known biochemical reactions catalysed by enzymes and transporters encoded in the human genome, GEMs analyse and predict the behaviour of complex metabolic networks. Continued advancements to the scale and scope of GEMs — from cells and tissues to microbiomes and the whole body — have helped to design effective treatments and develop better diagnostic tools for metabolic diseases. Furthermore, increasing amounts of multi-omics data are incorporated into GEMs to better identify the underlying mechanisms, biomarkers and potential drug targets of metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Reconstructing global human and cell- and tissue-specific GEMs.
Fig. 2: Whole-body metabolic modelling accounting for the host and microbiome interactions.
Fig. 3: Interpretation of multi-omics data using systems biology and AI.
Fig. 4: Multi-omics data throughout life.

References

  1. Saklayen, M. G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20, 12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martínez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    Article  PubMed  Google Scholar 

  3. Xu, Y. et al. An atlas of genetic scores to predict multi-omic traits. Nature 616, 123–131 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aaltonen, L. A. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  Google Scholar 

  5. Mardinoglu, A. & Nielsen, J. Systems medicine and metabolic modelling. J. Intern. Med. 271, 142–154 (2012). An extensive review of the use of GEMs in systems medicine-based applications.

    Article  CAS  PubMed  Google Scholar 

  6. Hyduke, D. R., Lewis, N. E. & Palsson, B. Ø. Analysis of omics data with genome-scale models of metabolism. Mol. Biosyst. 9, 167–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Palsson, B. & Zengler, K. The challenges of integrating multi-omic data sets. Nat. Chem. Biol. 6, 787–789 (2010).

    Article  PubMed  Google Scholar 

  9. Mardinoglu, A., Boren, J., Smith, U., Uhlen, M. & Nielsen, J. Systems biology in hepatology: approaches and applications. Nat. Rev. Gastroenterol. Hepatol. 15, 365–377 (2018). An extensive review of the studies that use biological networks for integration of multiomics data for complex liver diseases.

    Article  CAS  PubMed  Google Scholar 

  10. Bajwa, J., Munir, U., Nori, A. & Williams, B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc. J. 8, e188–e194 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Oberhardt, M. A., Palsson, B. Ø. & Papin, J. A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mardinoglu, A., Gatto, F. & Nielsen, J. Genome-scale modeling of human metabolism — a systems biology approach. Biotechnol. J. 8, 985–996 (2013). An extensive review of the algorithms for the reconstruction of cell- and tissue- type specific GEMs.

    Article  CAS  PubMed  Google Scholar 

  13. O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell 161, 971–987 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nielsen, J. Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab. 25, 572–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Wagner, A. et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yizhak, K., Chaneton, B., Gottlieb, E. & Ruppin, E. Modeling cancer metabolism on a genome scale. Mol. Syst. Biol. 11, 817 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Terekhanova, N. V. et al. Epigenetic regulation during cancer transitions across 11 tumour types. Nature 623, 432–441 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007). This study presents the first global human GEM and its use for systems biology-based applications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma, H. et al. The Edinburgh Human Metabolic Network reconstruction and its functional analysis. Mol. Syst. Biol. 3, 135 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hao, T., Ma, H. W., Zhao, X. M. & Goryanin, I. Compartmentalization of the Edinburgh Human Metabolic Network. BMC Bioinformatics 11, 393 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Palsson, B. Ø. Systems Biology: Constraint-Based Reconstruction and Analysis (Cambridge Univ. Press, 2015).

  22. Agren, R. et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8, e1002518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Mardinoglu, A. et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 3083 (2014).

    Article  PubMed  Google Scholar 

  25. Gille, C. et al. HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol. Syst. Biol. 6, 411 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mardinoglu, A. et al. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 9, 649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanehisa, M. in ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposium 247 (eds. Bock, G. & Goode, J. A.) 91–103 (Wiley, 2002).

  28. Milacic, M. et al. The Reactome Pathway Knowledgebase 2024 Nucleic Acids Res. 52, D672–D678 (2024).

    Article  PubMed  Google Scholar 

  29. Quek, L.-E. et al. Reducing Recon 2 for steady-state flux analysis of HEK cell culture. J. Biotechnol. 184, 172–178 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Smallbone, K. Striking a balance with Recon 2.1. Preprint at arXiv https://doi.org/10.48550/arXiv.1311.5696 (2014).

  31. Swainston, N. et al. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12, 109 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018). This paper presents the community-based global reconstruction of human metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robinson, J. L. et al. An atlas of human metabolism. Sci. Signal. 13, eaaz1482 (2020). This paper presents an extensively curated global human GEM that unifies two parallel model lineages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dahal, S., Yurkovich, J. T., Xu, H., Palsson, B. O. & Yang, L. Synthesizing systems biology knowledge from omics using genome-scale models. Proteomics 20, 1900282 (2020).

    Article  CAS  Google Scholar 

  35. Mardinoglu, A. & Nielsen, J. New paradigms for metabolic modeling of human cells. Curr. Opin. Biotechnol. 34, 91–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Bordbar, A. & Palsson, B. O. Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J. Intern. Med. 271, 131–141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Uhlén, M. et al. Transcriptomics resources of human tissues and organs. Mol. Syst. Biol. 12, 862 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Satish Kumar, V., Dasika, M. S. & Maranas, C. D. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8, 212 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shlomi, T., Cabili, M. N., Herrgard, M. J., Palsson, B. O. & Ruppin, E. Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26, 1003–1010 (2008). This paper presents a computational method that describes the tissue specificity of human metabolism on a large scale.

    Article  CAS  PubMed  Google Scholar 

  40. Schultz, A. & Qutub, A. A. Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput. Biol. 12, e1004808 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vlassis, N., Pacheco, M. P. & Sauter, T. Fast reconstruction of compact context-specific metabolic network models. PLoS Comput. Biol. 10, e1003424 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Becker, S. A. & Palsson, B. O. Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4, e1000082 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bordbar, A. et al. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol. Syst. Biol. 8, 558 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zur, H., Ruppin, E. & Shlomi, T. iMAT: an integrative metabolic analysis tool. Bioinformatics 26, 3140–3142 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Jerby, L., Shlomi, T. & Ruppin, E. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6, 401 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jensen, P. A. & Papin, J. A. Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 27, 541–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Y., Eddy, J. A. & Price, N. D. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. 6, 153 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pacheco, M. P., Ji, J., Prohaska, T., García, M. M. & Sauter, T. scFASTCORMICS: a contextualization algorithm to reconstruct metabolic multi-cell population models from single-cell RNAseq data. Metabolites 12, 1211 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Berlo, R. J. et al. Predicting metabolic fluxes using gene expression differences as constraints. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 206–216 (2011).

    Article  PubMed  Google Scholar 

  50. Agren, R. et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10, 721 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Blais, E. M. et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat. Commun. 8, 14250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Machado, D. & Herrgard, M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol. 10, e1003580 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Opdam, S. et al. A systematic evaluation of methods for tailoring genome-scale metabolic models. Cell Syst. 4, 318–329.e6 (2017). A systemic benchmarking study for several algorithms that use omics data to construct cell-line- and tissue-specific GEMs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lieven, C. et al. MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272–276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gustafsson, J. et al. Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq data. Proc. Natl Acad. Sci. USA 120, e2217868120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wiback, S. J. & Palsson, B. O. Extreme pathway analysis of human red blood cell metabolism. Biophys. J. 83, 808–818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vo, T. D., Greenberg, H. J. & Palsson, B. O. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. 279, 39532–39540 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Vo, T. D., Paul Lee, W. N. & Palsson, B. O. Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh’s syndrome. Mol. Genet. Metab. 91, 15–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Bordbar, A., Jamshidi, N. & Palsson, B. O. iAB-RBC-283: a proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states. BMC Syst. Biol. 5, 110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Thomas, A., Rahmanian, S., Bordbar, A., Palsson, B. O. & Jamshidi, N. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance. Sci. Rep. 4, 3925 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yousefi, M., Marashi, S.-A., Sharifi-Zarchi, A. & Taleahmad, S. The metabolic network model of primed/naive human embryonic stem cells underlines the importance of oxidation-reduction potential and tryptophan metabolism in primed pluripotency. Cell Biosci. 9, 71 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sen, P. et al. Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia 63, 1017–1031 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sen, P. et al. Quantitative genome-scale metabolic modeling of human CD4+ T-cell differentiation reveals subset-specific regulation of glycosphingolipid pathways 37, 109973 (2021).

  65. Puniya, B. L. et al. Integrative computational approach identifies drug targets in CD4+ T-cell-mediated immune disorders. NPJ Syst. Biol. Appl. 7, 4 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Varemo, L. et al. Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Rep. 11, 921–933 (2015).

    Article  PubMed  Google Scholar 

  67. Zhao, Y. & Huang, J. Reconstruction and analysis of human heart-specific metabolic network based on transcriptome and proteome data. Biochem. Biophys. Res. Commun. 415, 450–454 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Karlstadt, A. et al. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst. Biol. 6, 114 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lewis, N. E. et al. Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat. Biotechnol. 28, 1279–1285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sertbaş, M., Ülgen, K. & Çakır, T. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio 4, 542–553 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Martín-Jiménez, C. A., Salazar-Barreto, D., Barreto, G. E. & González, J. Genome-scale reconstruction of the human astrocyte metabolic network. Front. Aging Neurosci. 9, 23 (2017).

    Article  PubMed  Google Scholar 

  72. Baloni, P. et al. Metabolic network analysis reveals altered bile acid synthesis and metabolism in Alzheimer’s disease. Cell Rep. Med. 1, 100138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baloni, P. et al. Multi-omic analyses characterize the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer’s disease. Commun. Biol. 5, 1074 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Preciat, G. et al. Mechanistic model-driven exometabolomic characterisation of human dopaminergic neuronal metabolism. Preprint at bioRxiv https://doi.org/10.1101/2021.06.30.450562 (2022).

  75. Chang, R. L., Xie, L., Xie, L., Bourne, P. E. & Palsson, B. O. Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput. Biol. 6, e1000938 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sohrabi-Jahromi, S., Marashi, S.-A. & Kalantari, S. A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis. Mamm. Genome 27, 158–167 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Nanda, P. & Ghosh, A. Genome scale-differential flux analysis reveals deregulation of lung cell metabolism on SARS-CoV-2 infection. PLoS Comput. Biol. 17, e1008860 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bordbar, A., Lewis, N. E., Schellenberger, J., Palsson, B. O. & Jamshidi, N. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol. Syst. Biol. 6, 422 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. McGarrity, S., Halldórsson, H., Palsson, S., Johansson, P. I. & Rolfsson, Ó. Understanding the causes and implications of endothelial metabolic variation in cardiovascular disease through genome-scale metabolic modeling. Front. Cardiovasc. Med. 3, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li, G.-H. et al. System-level metabolic modeling facilitates unveiling metabolic signature in exceptional longevity. Aging Cell 21, e13595 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Özcan, E. & Çakır, T. Reconstructed metabolic network models predict flux-level metabolic reprogramming in glioblastoma. Front. Neurosci. 10, 156 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Damiani, C. et al. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: the WarburQ effect. PLoS Comput. Biol. 13, e1005758 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Masid, M., Ataman, M. & Hatzimanikatis, V. Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN. Nat. Commun. 11, 2821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yizhak, K. et al. Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. eLife 3, e03641 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).

    Article  PubMed  Google Scholar 

  86. Turanli, B. et al. Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. EBioMedicine 42, 386–396 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lewis, J. E. & Kemp, M. L. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat. Commun. 12, 2700 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gatto, F., Miess, H., Schulze, A. & Nielsen, J. Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism. Sci. Rep. 5, 10738 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ghaffari, P. et al. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci. Rep. 5, 8183 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yizhak, K. et al. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol. Syst. Biol. 10, 744 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zielinski, D. C. et al. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci. Rep. 7, 41241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bordbar, A. et al. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst. Biol. 5, 180 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nam, H. et al. A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks. PLoS Comput. Biol. 10, e1003837 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  95. Richelle, A., Chiang, A. W. T., Kuo, C. C. & Lewis, N. E. Increasing consensus of context-specific metabolic models by integrating data-inferred cell functions. PLoS Comput. Biol. 15, e1006867 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Thiele, I. et al. Personalized whole‐body models integrate metabolism, physiology, and the gut microbiome. Mol. Syst. Biol. 16, e8982 (2020). This study presents two sex‐specific WBMMs that used organ‐specific information from the literature and omics data.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Martins Conde, P., Pfau, T., Pires Pacheco, M. & Sauter, T. A dynamic multi-tissue model to study human metabolism. NPJ Syst. Biol. Appl. 7, 5 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Foguet, C. et al. Genetically personalised organ-specific metabolic models in health and disease. Nat. Commun. 13, 7356 (2022). This study presents personalized organ-specific GEMs for 524,615 individuals to define how genetic variants affect biochemical reaction fluxes across major human tissues.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lewis, N. E., Nagarajan, H. & Palsson, B. O. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291–305 (2012). An extensive review and presentation of the phylogeny of more than 100 COBRA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Monk, J. M. et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35, 904–908 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tanaka, K. et al. Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res. 41, 687–699 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. López-Agudelo, V. A. et al. A systematic evaluation of Mycobacterium tuberculosis genome-scale metabolic networks. PLoS Comput. Biol. 16, e1007533 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lu, H. et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat. Commun. 10, 3586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shoaie, S. et al. Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 3, 2532 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Metwaly, A., Reitmeier, S. & Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 19, 383–397 (2022).

    Article  PubMed  Google Scholar 

  106. Aron-Wisnewsky, J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 17, 279–297 (2020).

    Article  PubMed  Google Scholar 

  107. Beura, S., Kundu, P., Das, A. K. & Ghosh, A. Metagenome-scale community metabolic modelling for understanding the role of gut microbiota in human health. Comput. Biol. Med. 149, 105997 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Ye, C. et al. Genome-scale metabolic network models: from first-generation to next-generation. Appl. Microbiol. Biotechnol. 106, 4907–4920 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 614, 125–135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Heinken, A. et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat. Biotechnol. 41, 1320–1331 (2023). This study presents the microbial GEMs for 7,302 strains, which have been extensively curated based on comparative genomics and literature searches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shoaie, S. et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).

    Article  PubMed  Google Scholar 

  115. Seaver, S. M. D. et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res. 49, D575–D588 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Zorrilla, F., Buric, F., Patil, K. R. & Zelezniak, A. metaGEM: reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Res. 49, e126 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bidkhori, G. & Shoaie, S. MIGRENE: the toolbox for microbial and individualized GEMs, reactobiome and community network modelling. Metabolites 14, 132 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bidkhori, G. et al. The reactobiome unravels a new paradigm in human gut microbiome metabolism. Preprint at bioRxiv https://doi.org/10.1101/2021.02.01.428114 (2021). This study describes a comprehensive computational platform for population stratification based on microbiome composition and community level metabolic models.

  119. Heinken, A. et al. APOLLO: a genome-scale metabolic reconstruction resource of 247,092 diverse human microbes spanning multiple continents, age groups, and body sites. Preprint at bioRxiv https://doi.org/10.1101/2023.10.02.560573 (2023). A comprehensive resource of human microbial GEMs spanning 19 phyla and accounting for microbial genomes from 34 countries, all age groups and five body sites.

  120. Sánchez, B. J. et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol. 13, 935 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Domenzain, I. et al. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nat. Commun. 13, 3766 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen, Y. et al. Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0. Nat. Protoc. 19, 629–667 (2024). This paper presents the latest version of GECKO method that incorporates the enzymatic constraints using kinetic and omics data to improve the predictive power of a GEM.

    Article  CAS  PubMed  Google Scholar 

  123. Li, F. et al. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nat. Catal. 5, 662–672 (2022).

    Article  CAS  Google Scholar 

  124. Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bauer, E., Zimmermann, J., Baldini, F., Thiele, I. & Kaleta, C. BacArena: individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol. 13, e1005544 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zomorrodi, A. R., Islam, M. M. & Maranas, C. D. d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth. Biol. 3, 247–257 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Zhuang, K. et al. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5, 305–316 (2011).

    Article  PubMed  Google Scholar 

  128. Louca, S. & Doebeli, M. Calibration and analysis of genome-based models for microbial ecology. eLife 4, e08208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Popp, D. & Centler, F. μbialSim: constraint-based dynamic simulation of complex microbiomes. Front. Bioeng. Biotechnol. 8, 574 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Diener, C., Gibbons, S. M. & Resendis-Antonio, O. MICOM: metagenome-scale modeling to infer metabolic interactions in the gut microbiota. mSystems 5, e00606-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Baldini, F. et al. The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities. Bioinformatics 35, 2332–2334 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Mardinoglu, A. et al. Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 13, 916 (2017). This study presents personalized GEMs for human hepatocytes that account for the interactions between liver and other metabolic tissues, including adipose, muscle and brain tissues.

    Article  PubMed  PubMed Central  Google Scholar 

  133. El-Semman, I. E. et al. Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst. Biol. 8, 41 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zomorrodi, A. R. & Maranas, C. D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lee, S. et al. Integrated network analysis reveals an association between plasma mannose levels and insulin resistance. Cell Metab. 24, 172–184 (2016). This study presents cell-specific integrated networks that integrate functional GEMs with transcriptional regulatory and PPI networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mardinoglu, A. et al. Plasma mannose levels are associated with incident type 2 diabetes and cardiovascular disease. Cell Metab. 26, 281–283 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Lee, S., Mardinoglu, A., Zhang, C., Lee, D. & Nielsen, J. Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis. Nucleic Acids Res. 44, 5529–5539 (2016). This paper presents HCC tumour-specific integrated networks that integrate GEMs with signalling networks.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lee, S. et al. Network analyses identify liver‐specific targets for treating liver diseases. Mol. Syst. Biol. 13, 938 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Chella Krishnan, K. et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease. Cell Syst. 6, 103–115.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Chella Krishnan, K. et al. Liver pyruvate kinase promotes NAFLD/NASH in both mice and humans in a sex-specific manner. Cell. Mol. Gastroenterol. Hepatol. 11, 389–406 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Liu, Z. et al. Pyruvate kinase L/R is a regulator of lipid metabolism and mitochondrial function. Metab. Eng. 52, 263–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Mardinoglu, A., Uhlen, M. & Borén, J. Broad views of non-alcoholic fatty liver disease. Cell Syst. 6, 7–9 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Arif, M. et al. iNetModels 2.0: an interactive visualization and database of multi-omics data. Nucleic Acids Res. 49, W271–W276 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Owen, M. J. et al. An automated 13.5 hour system for scalable diagnosis and acute management guidance for genetic diseases. Nat. Commun. 13, 4057 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Seydel, C. Baby’s first genome. Nat. Biotechnol. 40, 636–640 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Kingsmore, S. F. et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 109, 1605–1619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ceyhan-Birsoy, O. et al. Interpretation of genomic sequencing results in healthy and ill newborns: results from the BabySeq PROJECt. Am. J. Hum. Genet. 104, 76–93 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sahoo, S., Franzson, L., Jonsson, J. J. & Thiele, I. A compendium of inborn errors of metabolism mapped onto the human metabolic network. Mol. Biosyst. 8, 2545–2558 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Olin, A. et al. Stereotypic immune system development in newborn children. Cell 174, 1277–1292.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zaunseder, E. et al. Personalized metabolic whole-body models for newborns and infants predict growth and biomarkers of inherited metabolic diseases. Cell Metab. 36, 1882–1897.e7 (2024). This paper presents a resource of 360 organ-resolved, sex-specific whole-body models of newborn and infant metabolism spanning the first 180 days of life.

    Article  CAS  PubMed  Google Scholar 

  151. Torkamani, A., Andersen, K. G., Steinhubl, S. R. & Topol, E. J. High-definition medicine. Cell 170, 828–843 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Qiu, C. et al. Multi-omics data integration for identifying osteoporosis biomarkers and their biological interaction and causal mechanisms. iScience 23, 100847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Picard, M., Scott-Boyer, M. P., Bodein, A., Périn, O. & Droit, A. Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 19, 3735–3746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lu, M. & Zhan, X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 9, 77–102 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bordbar, A. et al. Personalized whole-cell kinetic models of metabolism for discovery in genomics and pharmacodynamics. Cell Syst. 1, 283–292 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Battisti, U. M. et al. Exploration of novel urolithin C derivatives as non-competitive inhibitors of liver pyruvate kinase. Pharmaceuticals 16, 668 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nain-Perez, A. et al. Tuning liver pyruvate kinase activity up or down with a new class of allosteric modulators. Eur. J. Med. Chem. 250, 115177 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Battisti, U. M. et al. Ellagic acid and its metabolites as potent and selective allosteric inhibitors of liver pyruvate kinase. Nutrients 15, 577 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nain-Perez, A. et al. Anthraquinone derivatives as ADP-competitive inhibitors of liver pyruvate kinase. Eur. J. Med. Chem. 234, 114270 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Battisti, U. M. et al. Serendipitous identification of a covalent activator of liver pyruvate kinase. ChemBioChem 24, e202200339 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Zhang, C. et al. Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositioning. eBioMedicine 83, 104214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kim, W. et al. Characterization of an in vitro steatosis model simulating activated de novo lipogenesis in MAFLD patients. iScience 26, 107727 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, X. et al. The acute effect of different NAD+ precursors included in the combined metabolic activators. Free Radic. Biol. Med. 205, 77–89 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Yang, H. et al. Longitudinal metabolomics analysis reveals the acute effect of cysteine and NAC included in the combined metabolic activators. Free Radic. Biol. Med. 204, 347–358 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, C. et al. The acute effect of metabolic cofactor supplementation: a potential therapeutic strategy against non‐alcoholic fatty liver disease. Mol. Syst. Biol. 16, e9495 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zeybel, M. et al. Combined metabolic activators therapy ameliorates liver fat in nonalcoholic fatty liver disease patients. Mol. Syst. Biol. 17, e10459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Altay, O. et al. Combined metabolic activators accelerates recovery in mild-to-moderate COVID-19. Adv. Sci. 8, 2101222 (2021).

    Article  CAS  Google Scholar 

  168. Yulug, B. et al. Combined metabolic activators improve cognitive functions in Alzheimer’s disease patients: a randomised, double-blinded, placebo-controlled phase-II trial. Transl. Neurodegener. 12, 4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yulug, B. et al. Combined metabolic activators improve cognitive functions without altering motor scores in Parkinson’s disease. Preprint at medRxiv https://doi.org/10.1101/2021.07.28.21261293 (2021).

  170. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04044131 (2022).

  171. Gatto, F. et al. Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep. 15, 1822–1836 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Gatto, F., Maruzzo, M., Magro, C., Basso, U. & Nielsen, J. Prognostic value of plasma and urine glycosaminoglycan scores in clear cell renal cell carcinoma. Front. Oncol. 6, 253 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gatto, F. et al. Plasma glycosaminoglycans as diagnostic and prognostic biomarkers in surgically treated renal cell carcinoma. Eur. Urol. Oncol. 1, 364–377 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Bratulic, S. et al. Analysis of normal levels of free glycosaminoglycans in urine and plasma in adults. J. Biol. Chem. 298, 101575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gatto, F. et al. Plasma and urine free glycosaminoglycans as monitoring and predictive biomarkers in metastatic renal cell carcinoma: a prospective cohort study. JCO Precis. Oncol. 7, e2200361 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gatto, F. et al. Plasma and urine free glycosaminoglycans as monitoring biomarkers in nonmetastatic renal cell carcinoma — a prospective cohort study. Eur. Urol. Open Sci. 42, 30–39 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Tamburro, D. et al. Analytical performance of a standardized kit for mass spectrometry-based measurements of human glycosaminoglycans. J. Chromatogr. B 1177, 122761 (2021).

    Article  CAS  Google Scholar 

  178. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04006405 (2023).

  179. Bratulic, S. et al. Noninvasive detection of any-stage cancer using free glycosaminoglycans. Proc. Natl Acad. Sci. USA 119, e2115328119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05235009 (2023).

  181. D’Avanzo, F. et al. Mucopolysaccharidoses differential diagnosis by mass spectrometry-based analysis of urine free glycosaminoglycans — a diagnostic prediction model. Biomolecules 13, 532 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Zeybel, M. et al. Multiomics analysis reveals the impact of microbiota on host metabolism in hepatic steatosis. Adv. Sci. 9, e2104373 (2022).

    Article  Google Scholar 

  183. Shandhi, M. M. H. & Dunn, J. P. AI in medicine: where are we now and where are we going? Cell Rep. Med. 3, 100861 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Omiye, J. A., Gui, H., Rezaei, S. J., Zou, J. & Daneshjou, R. Large language models in medicine: the potentials and pitfalls. Ann. Intern. Med. 177, 210–220 (2024).

    Article  PubMed  Google Scholar 

  185. Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Di Filippo, M. et al. INTEGRATE: model-based multi-omics data integration to characterize multi-level metabolic regulation. PLoS Comput. Biol. 18, e1009337 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Faria, J. P. et al. ModelSEED v2: high-throughput genome-scale metabolic model reconstruction with enhanced energy biosynthesis pathway prediction. Preprint at bioRxiv https://doi.org/10.1101/2023.10.04.556561 (2023).

  189. Vezina, B. et al. Bactabolize is a tool for high-throughput generation of bacterial strain-specific metabolic models. eLife 12, RP87406 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zimmermann, J., Kaleta, C. & Waschina, S. gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol. 22, 81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Büchel, F. et al. Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol. 7, 116 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  192. King, Z. A. et al. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Moretti, S. et al. MetaNetX/MNXref–reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic acids Res. 44, D523–D526 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Garza, D. R., van Verk, M. C., Huynen, M. A. & Dutilh, B. E. Towards predicting the environmental metabolome from metagenomics with a mechanistic model. Nat. Microbiol. 3, 456–460 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Price, N. D. et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 35, 747–756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Piening, B. D. et al. Integrative personal omics profiles during periods of weight gain and loss. Cell Syst. 6, 157–170.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tebani, A. et al. Integration of molecular profiles in a longitudinal wellness profiling cohort. Nat. Commun. 11, 4487 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zahedani, A. D. et al. Digital health application integrating wearable data and behavioral patterns improves metabolic health. NPJ Digital Med. 6, 216 (2023).

    Article  Google Scholar 

  199. All of Us Research Program Investigators. The “All of Us” research program. N. Engl. J. Med. 381, 668–676 (2019).

    Article  Google Scholar 

  200. Callaway, E. World’s biggest set of human genome sequences opens to scientists. Nature 624, 16–17 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Yurkovich, J. T. et al. The transition from genomics to phenomics in personalized population health. Nat. Rev. Genet. 25, 286–302 (2024).

    Article  CAS  PubMed  Google Scholar 

  204. Shilo, S. et al. 10K: a large‐scale prospective longitudinal study in Israel. Eur. J. Epidemiol. 36, 1187–1194 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.M. thanks the Knut and Alice Wallenberg Foundation. The authors also thank the Systems Medicine group members for reading and providing comments.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Adil Mardinoglu or Bernhard Ø. Palsson.

Ethics declarations

Competing interests

A.M. is the co-founder of SZA Longevity, BASH Biotech, Trustlife Therapeutics, ScandiBio Therapeutics and ScandiEdge Therapeutics, and B.Ø.P. is the co-founder of Sinopia Biosciences and Conarium Bioworks.

Peer review

Peer review information

Nature Reviews Genetics thanks Thomas Sauter, Aleksej Zelezniak and Cristal Zuniga for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

iNetModels Interactive Database: https://inetmodels.com

KEGG: https://www.genome.jp/kegg/pathway.html

Reactome: https://reactome.org/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardinoglu, A., Palsson, B.Ø. Genome-scale models in human metabologenomics. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00768-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00768-0

  • Springer Nature Limited

Navigation