Skip to main content

Advertisement

Log in

Graves disease: latest understanding of pathogenesis and treatment options

  • Review Article
  • Published:

From Nature Reviews Endocrinology

View current issue Sign up to alerts

Abstract

Graves disease is the most common cause of hyperthyroidism in iodine-sufficient areas. The main responsible mechanism is related to autoantibodies that bind and activate the thyrotropin receptor (TSHR). Although Graves hyperthyroidism is relatively common, no causal treatment options are available. Established treatment modalities are antithyroid drugs, which reduce thyroid hormone synthesis, radioactive iodine and surgery. However, emerging drugs that target the main autoantigen (monoclonal antibodies, small molecules, peptides) or block the immune pathway have been recently tested in clinical trials. Graves disease can involve the thyroid exclusively or it can be associated with extrathyroidal manifestations, among which Graves orbitopathy is the most common. The presence of Graves orbitopathy can change the management of the disease. An established treatment for moderate-to-severe Graves orbitopathy is intravenous glucocorticoids. However, recent advances in understanding the pathogenesis of Graves orbitopathy have allowed the development of new target-based therapies by blocking pro-inflammatory cytokine receptors, lymphocytic infiltration or the insulin-like growth factor 1 receptor (IGF1R), with several clinical trials providing promising results. This article reviews the new discoveries in the pathogenesis of Graves hyperthyroidism and Graves orbitopathy that offer several important tools in disease management.

Key points

  • Graves disease is an autoimmune condition that can involve the thyroid exclusively or can be associated with extrathyroidal manifestations, of which Graves orbitopathy is the most common.

  • The main mechanism responsible for Graves hyperthyroidism is the activation of the thyroid-stimulating hormone receptor (TSHR) by autoantibodies that act as agonists, causing thyrocyte proliferation and hyperfunction.

  • None of the conventional treatments for Graves hyperthyroidism act on its pathogenesis; new molecules that target early recognition of TSHR peptides, T cell activation, B cell stimulation and survival, production of TSHR autoantibodies, and TSHR activation have been tested with encouraging results.

  • Graves orbitopathy is characterized by immune-mediated inflammatory reactions against autoantigens shared by thyroid epithelial cells and orbital fibroblasts; intravenous glucocorticoids are, to date, the first-line treatments for Graves orbitopathy.

  • New target-based therapies that block pro-inflammatory cytokine receptors, lymphocytic infiltration or the insulin-like growth factor 1 receptor (IGF1R) have been tested in several clinical trials and show promising results in Graves orbitopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Pathogenesis of Graves hyperthyroidism and mechanisms of action of the most promising recently proposed therapies.
Fig. 2: Pathogenesis of Graves orbitopathy and mechanisms of action of the most promising recently proposed therapies.

Similar content being viewed by others

References

  1. Smith, T. J. & Hegedus, L. Graves’ disease. N. Engl. J. Med. 375, 1552–1565 (2016).

    Article  PubMed  Google Scholar 

  2. Adams, D. D. Pathogenesis of the hyperthyroidism of Graves’s disease. Br. Med. J. 1, 1015–1019 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, H. J., Li, C. W., Hammerstad, S. S., Stefan, M. & Tomer, Y. Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J. Autoimmun. 64, 82–90 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brix, T. H., Kyvik, K. O., Christensen, K. & Hegedus, L. Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J. Clin. Endocrinol. Metab. 86, 930–934 (2001).

    CAS  PubMed  Google Scholar 

  5. Simmonds, M. J. et al. Contribution of single nucleotide polymorphisms within FCRL3 and MAP3K7IP2 to the pathogenesis of Graves’ disease. J. Clin. Endocrinol. Metab. 91, 1056–1061 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Inoue, N. et al. Associations between autoimmune thyroid disease prognosis and functional polymorphisms of susceptibility genes, CTLA4, PTPN22, CD40, FCRL3, and ZFAT, previously revealed in genome-wide association studies. J. Clin. Immunol. 32, 1243–1252 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Khong, J. J. et al. Pooled genome wide association detects association upstream of FCRL3 with Graves’ disease. BMC Genomics 17, 939 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhao, S. X. et al. A refined study of FCRL genes from a genome-wide association study for Graves’ disease. PLoS One 8, e57758 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hasham, A. & Tomer, Y. Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol. Res. 54, 204–213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Faustino, L. C. et al. Precision medicine in Graves’ disease: CD40 gene variants predict clinical response to an anti-CD40 monoclonal antibody. Front. Endocrinol. 12, 691781 (2021).

    Article  Google Scholar 

  11. Kahaly, G. J. et al. A novel anti-CD40 monoclonal antibody, iscalimab, for control of Graves hyperthyroidism-a proof-of-concept trial. J. Clin. Endocrinol. Metab. 105, dgz013 (2020).

    Article  PubMed  Google Scholar 

  12. Bufalo, N. E. et al. Polymorphisms of the genes CTLA4, PTPN22, CD40, and PPARG and their roles in Graves’ disease: susceptibility and clinical features. Endocrine 71, 104–112 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Shi, T. T. et al. Alterations in the intestinal microbiota of patients with severe and active Graves’ orbitopathy: a cross-sectional study. J. Endocrinol. Invest. 42, 967–978 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Biscarini, F. et al. Gut microbiome associated with graves disease and graves orbitopathy: the INDIGO multicenter European study. J. Clin. Endocrinol. Metab. 108, 2065–2077 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pearce, S. H. S. et al. Antigen-specific immunotherapy with thyrotropin receptor peptides in Graves’ hyperthyroidism: a phase I study. Thyroid 29, 1003–1011 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chin, Y. H. et al. Prevalence of thyroid eye disease in Graves’ disease: a meta-analysis and systematic review. Clin. Endocrinol. 93, 363–374 (2020).

    Article  Google Scholar 

  17. Fatourechi, V. Thyroid dermopathy and acropachy. Best Pract. Res. Clin. Endocrinol. Metab. 26, 553–565 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Bahn, R. S. Current insights into the pathogenesis of Graves’ ophthalmopathy. Horm. Metab. Res. 47, 773–778 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Davies, T. F. et al. Graves’ disease. Nat. Rev. Dis. Prim. 6, 52 (2020).

    Article  PubMed  Google Scholar 

  20. Kriss, J. P. Pathogenesis and treatment of pretibial myxedema. Endocrinol. Metab. Clin. North Am. 16, 409–415 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Fatourechi, V., Pajouhi, M. & Fransway, A. F. Dermopathy of Graves disease (pretibial myxedema). Review of 150 cases. Medicine 73, 1–7 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Bartley, G. B. Rundle and his curve. Arch. Ophthalmol. 129, 356–358 (2011).

    Article  PubMed  Google Scholar 

  23. Bartalena, L. & Fatourechi, V. Extrathyroidal manifestations of Graves’ disease: a 2014 update. J. Endocrinol. Invest. 37, 691–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Bartalena, L. & Tanda, M. L. Current concepts regarding Graves’ orbitopathy. J. Intern. Med. 292, 692–716 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mourits, M. P., Prummel, M. F., Wiersinga, W. M. & Koornneef, L. Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin. Endocrinol. 47, 9–14 (1997).

    Article  CAS  Google Scholar 

  26. Bartalena, L. et al. The 2021 European Group on Graves’ Orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol. 185, G43–G67 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Perros, P., Crombie, A. L. & Kendall-Taylor, P. Natural history of thyroid associated ophthalmopathy. Clin. Endocrinol. 42, 45–50 (1995).

    Article  CAS  Google Scholar 

  28. McLeod, D. S. & Cooper, D. S. The incidence and prevalence of thyroid autoimmunity. Endocrine 42, 252–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Taylor, P. N. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol. 14, 301–316 (2018).

    Article  PubMed  Google Scholar 

  30. Schuh, A. et al. Presentation of Graves’ orbitopathy within European Group On Graves’ Orbitopathy (EUGOGO) centres from 2012 to 2019 (PREGO III). Br. J. Ophthalmol. 108, 294–300 (2023).

    Article  Google Scholar 

  31. Tanda, M. L. et al. Prevalence and natural history of Graves’ orbitopathy in a large series of patients with newly diagnosed graves’ hyperthyroidism seen at a single center. J. Clin. Endocrinol. Metab. 98, 1443–1449 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Tomer, Y. Mechanisms of autoimmune thyroid diseases: from genetics to epigenetics. Annu. Rev. Pathol. 9, 147–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Limbach, M. et al. Epigenetic profiling in CD4+ and CD8+ T cells from Graves’ disease patients reveals changes in genes associated with T cell receptor signaling. J. Autoimmun. 67, 46–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Kleinau, G. et al. Structural-functional features of the thyrotropin receptor: a class A G-protein-coupled receptor at work. Front. Endocrinol. 8, 86 (2017).

    Article  Google Scholar 

  35. Mezei, M., Latif, R. & Davies, T. F. Computational model of the full-length TSH receptor. eLife 11, e81415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanders, J., Miguel, R. N., Furmaniak, J. & Smith, B. R. TSH receptor monoclonal antibodies with agonist, antagonist, and inverse agonist activities. Methods Enzymol. 485, 393–420 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Morris, J. C. et al. Identification of epitopes and affinity purification of thyroid stimulating auto-antibodies using synthetic human TSH receptor peptides. Autoimmunity 17, 287–299 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Tahara, K. et al. Epitopes for thyroid stimulating and blocking autoantibodies on the extracellular domain of the human thyrotropin receptor. Thyroid 7, 867–877 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Weetman, A. P. et al. Thyroid-stimulating antibody activity between different immunoglobulin G subclasses. J. Clin. Invest. 86, 723–727 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakashima, M., Martin, A. & Davies, T. F. Intrathyroidal T cell accumulation in Graves’ disease: delineation of mechanisms based on in situ T cell receptor analysis. J. Clin. Endocrinol. Metab. 81, 3346–3351 (1996).

    CAS  PubMed  Google Scholar 

  41. Morshed, S. A., Latif, R. & Davies, T. F. Characterization of thyrotropin receptor antibody-induced signaling cascades. Endocrinology 150, 519–529 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Nagayama, Y., Wadsworth, H. L., Russo, D., Chazenbalk, G. D. & Rapoport, B. Binding domains of stimulatory and inhibitory thyrotropin (TSH) receptor autoantibodies determined with chimeric TSH-lutropin/chorionic gonadotropin receptors. J. Clin. Invest. 88, 336–340 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chazenbalk, G. D. et al. Thyroid-stimulating autoantibodies in Graves disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. J. Clin. Invest. 110, 209–217 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Latif, R., Morshed, S. A., Zaidi, M. & Davies, T. F. The thyroid-stimulating hormone receptor: impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signaling. Endocrinol. Metab. Clin. North Am. 38, 319–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Rapoport, B., Aliesky, H. A., Chen, C. R. & McLachlan, S. M. Evidence that TSH receptor a-subunit multimers, not monomers, drive antibody affinity maturation in Graves’ disease. J. Clin. Endocrinol. Metab. 100, E871–875 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McLachlan, S. M. & Rapoport, B. Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid 23, 14–24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kasagi, K. et al. Fluctuating thyroid function depending on the balance between stimulating and blocking types of TSH receptor antibodies: a case report. Thyroid 3, 315–318 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Mao, C. et al. Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves’ disease. J. Immunol. 186, 4734–4743 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Pan, D., Shin, Y. H., Gopalakrishnan, G., Hennessey, J. & De Groot, L. J. Regulatory T cells in Graves’ disease. Clin. Endocrinol. 71, 587–593 (2009).

    Article  CAS  Google Scholar 

  50. Xing, Y. & Hogquist, K. A. T-cell tolerance: central and peripheral. Cold Spring Harb. Perspect. Biol. 4, a006957 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Martin, A., Schwartz, A. E., Friedman, E. W. & Davies, T. F. Successful production of intrathyroidal human T cell hybridomas: evidence for intact helper T cell function in Graves’ disease. J. Clin. Endocrinol. Metab. 69, 1104–1108 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Rapoport, B. & McLachlan, S. M. Graves’ hyperthyroidism is antibody-mediated but is predominantly a Th1-type cytokine disease. J. Clin. Endocrinol. Metab. 99, 4060–4061 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. ElTanbouly, M. A. et al. VISTA is a checkpoint regulator for naive T cell quiescence and peripheral tolerance. Science 367, eaay0524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Armengol, M. P. et al. Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J. Immunol. 170, 6320–6328 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Fernando, R. et al. Human fibrocytes coexpress thyroglobulin and thyrotropin receptor. Proc. Natl Acad. Sci. USA 109, 7427–7432 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feliciello, A. et al. Expression of thyrotropin-receptor mRNA in healthy and Graves’ disease retro-orbital tissue. Lancet 342, 337–338 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Hai, Y. P., Lee, A. C. H., Frommer, L., Diana, T. & Kahaly, G. J. Immunohistochemical analysis of human orbital tissue in Graves’ orbitopathy. J. Endocrinol. Invest. 43, 123–137 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Kumar, S., Nadeem, S., Stan, M. N., Coenen, M. & Bahn, R. S. A stimulatory TSH receptor antibody enhances adipogenesis via phosphoinositide 3-kinase activation in orbital preadipocytes from patients with Graves’ ophthalmopathy. J. Mol. Endocrinol. 46, 155–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, M. et al. A promising mouse model of Graves’ orbitopathy induced by adenovirus expressing thyrotropin receptor A subunit. Thyroid 31, 638–648 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Holthoff, H. P. et al. Prolonged TSH receptor A subunit immunization of female mice leads to a long-term model of Graves’ disease, tachycardia, and cardiac hypertrophy. Endocrinology 156, 1577–1589 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Moshkelgosha, S., So, P. W., Deasy, N., Diaz-Cano, S. & Banga, J. P. Cutting edge: retrobulbar inflammation, adipogenesis, and acute orbital congestion in a preclinical female mouse model of Graves’ orbitopathy induced by thyrotropin receptor plasmid-in vivo electroporation. Endocrinology 154, 3008–3015 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Gerding, M. N. et al. Association of thyrotrophin receptor antibodies with the clinical features of Graves’ ophthalmopathy. Clin. Endocrinol. 52, 267–271 (2000).

    Article  CAS  Google Scholar 

  63. Nicoli, F. et al. Correlation between serum anti-TSH receptor autoantibodies (TRAbs) and the clinical feature of Graves’ orbitopathy. J. Endocrinol. Invest. 44, 581–585 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Eckstein, A. K. et al. Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of the disease. J. Clin. Endocrinol. Metab. 91, 3464–3470 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Douglas, R. S. et al. Teprotumumab for the treatment of active thyroid eye disease. N. Engl. J. Med. 382, 341–352 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Pritchard, J., Han, R., Horst, N., Cruikshank, W. W. & Smith, T. J. Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with Graves’ disease is mediated through the insulin-like growth factor I receptor pathway. J. Immunol. 170, 6348–6354 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Douglas, R. S. et al. B cells from patients with Graves’ disease aberrantly express the IGF-1 receptor: implications for disease pathogenesis. J. Immunol. 181, 5768–5774 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Douglas, R. S., Gianoukakis, A. G., Kamat, S. & Smith, T. J. Aberrant expression of the insulin-like growth factor-1 receptor by T cells from patients with Graves’ disease may carry functional consequences for disease pathogenesis. J. Immunol. 178, 3281–3287 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Smith, T. J. & Hoa, N. Immunoglobulins from patients with Graves’ disease induce hyaluronan synthesis in their orbital fibroblasts through the self-antigen, insulin-like growth factor-I receptor. J. Clin. Endocrinol. Metab. 89, 5076–5080 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Tsui, S. et al. Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in Graves’ disease. J. Immunol. 181, 4397–4405 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Minich, W. B. et al. Autoantibodies to the IGF1 receptor in Graves’ orbitopathy. J. Clin. Endocrinol. Metab. 98, 752–760 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Varewijck, A. J. et al. Circulating IgGs may modulate IGF-I receptor stimulating activity in a subset of patients with Graves’ ophthalmopathy. J. Clin. Endocrinol. Metab. 98, 769–776 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Lanzolla, G. et al. Putative protective role of autoantibodies against the insulin-like growth factor-1 receptor in Graves’ disease: results of a pilot study. J. Endocrinol. Invest. 43, 1759–1768 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Aniszewski, J. P., Valyasevi, R. W. & Bahn, R. S. Relationship between disease duration and predominant orbital T cell subset in Graves’ ophthalmopathy. J. Clin. Endocrinol. Metab. 85, 776–780 (2000).

    CAS  PubMed  Google Scholar 

  75. Fang, S. et al. Regulation of orbital fibrosis and adipogenesis by pathogenic Th17 cells in graves orbitopathy. J. Clin. Endocrinol. Metab. 102, 4273–4283 (2017).

    Article  PubMed  Google Scholar 

  76. Ma, R. et al. PH20 inhibits TGFβ1-induced differentiation of perimysial orbital fibroblasts via hyaluronan-CD44 pathway in thyroid-associated ophthalmopathy. Invest. Ophthalmol. Vis. Sci. 60, 1431–1441 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Rotondo Dottore, G. et al. Association of T and B cells infiltrating orbital tissues with clinical features of Graves orbitopathy. JAMA Ophthalmol. 136, 613–619 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bahn, R. S. Graves’ ophthalmopathy. N. Engl. J. Med. 362, 726–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rotondo Dottore, G. et al. Insights into the role of DNA methylation and gene expression in Graves orbitopathy. J. Clin. Endocrinol. Metab. 108, e160–e168 (2023).

    Article  PubMed  Google Scholar 

  80. Martinez-Hernandez, R. et al. A microRNA signature for evaluation of risk and severity of autoimmune thyroid diseases. J. Clin. Endocrinol. Metab. 103, 1139–1150 (2018).

    Article  PubMed  Google Scholar 

  81. Shahraki, K. et al. Non-coding RNA-mediated epigenetic alterations in Grave’s ophthalmopathy: a scoping systematic review. Noncoding RNA Res. 8, 426–450 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jang, S. Y. et al. Role of microRNA-146a in regulation of fibrosis in orbital fibroblasts from patients with Graves’ orbitopathy. Br. J. Ophthalmol. 102, 407–414 (2018).

    Article  PubMed  Google Scholar 

  83. De Leo, S., Lee, S. Y. & Braverman, L. E. Hyperthyroidism. Lancet 388, 906–918 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sundaresh, V. et al. Comparative effectiveness of therapies for Graves’ hyperthyroidism: a systematic review and network meta-analysis. J. Clin. Endocrinol. Metab. 98, 3671–3677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cooper, D. S. Antithyroid drugs. N. Engl. J. Med. 352, 905–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Abraham, P., Avenell, A., McGeoch, S. C., Clark, L. F. & Bevan, J. S. Antithyroid drug regimen for treating Graves’ hyperthyroidism. Cochrane Database Syst. Rev. 2010, CD003420 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. Struja, T. et al. Can we predict relapse in Graves’ disease? Results from a systematic review and meta-analysis. Eur. J. Endocrinol. 176, 87–97 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Ross, D. S. et al. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 26, 1343–1421 (2016).

    Article  PubMed  Google Scholar 

  89. Bartalena, L. et al. Use of corticosteroids to prevent progression of Graves’ ophthalmopathy after radioiodine therapy for hyperthyroidism. N. Engl. J. Med. 321, 1349–1352 (1989).

    Article  CAS  PubMed  Google Scholar 

  90. Ross, D. S. Radioiodine therapy for hyperthyroidism. N. Engl. J. Med. 364, 542–550 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Bartalena, L., Burch, H. B., Burman, K. D. & Kahaly, G. J. A 2013 European survey of clinical practice patterns in the management of Graves’ disease. Clin. Endocrinol. 84, 115–120 (2016).

    Article  CAS  Google Scholar 

  92. Ruslan, A. & Okosieme, O. E. Non-thionamide antithyroid drug options in Graves’ hyperthyroidism. Expert Rev. Endocrinol. Metab. 18, 67–79 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Lane, L. C., Cheetham, T. D., Perros, P. & Pearce, S. H. S. New therapeutic horizons for Graves’ hyperthyroidism. Endocr. Rev. 41, 873–884 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sabatos-Peyton, C. A., Verhagen, J. & Wraith, D. C. Antigen-specific immunotherapy of autoimmune and allergic diseases. Curr. Opin. Immunol. 22, 609–615 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Larche, M. & Wraith, D. C. Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat. Med. 11, S69–S76 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Jansson, L., Vrolix, K., Jahraus, A., Martin, K. F. & Wraith, D. C. Immunotherapy with apitopes blocks the immune response to TSH receptor in HLA-DR transgenic mice. Endocrinology 159, 3446–3457 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Evans, M. et al. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin. Endocrinol. 73, 404–412 (2010).

    Article  CAS  Google Scholar 

  98. Furmaniak, J., Sanders, J. & Rees Smith, B. Blocking type TSH receptor antibodies. Auto. Immun. Highlights 4, 11–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Furmaniak, J., Sanders, J., Sanders, P., Li, Y. & Rees Smith, B. TSH receptor specific monoclonal autoantibody K1-70(TM) targeting of the TSH receptor in subjects with Graves’ disease and Graves’ orbitopathy-results from a phase I clinical trial. Clin. Endocrinol. 96, 878–887 (2022).

    Article  CAS  Google Scholar 

  100. Neumann, S. et al. A new small-molecule antagonist inhibits Graves’ disease antibody activation of the TSH receptor. J. Clin. Endocrinol. Metab. 96, 548–554 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Neumann, S. et al. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology 155, 310–314 (2014).

    Article  PubMed  Google Scholar 

  102. Latif, R., Realubit, R. B., Karan, C., Mezei, M. & Davies, T. F. TSH receptor signaling abrogation by a novel small molecule. Front. Endocrinol. 7, 130 (2016).

    Article  Google Scholar 

  103. Marcinkowski, P. et al. A new highly thyrotropin receptor-selective small-molecule antagonist with potential for the treatment of Graves’ orbitopathy. Thyroid 29, 111–123 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Munroe, M. E. Functional roles for T cell CD40 in infection and autoimmune disease: the role of CD40 in lymphocyte homeostasis. Semin. Immunol. 21, 283–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Carayanniotis, G., Masters, S. R. & Noelle, R. J. Suppression of murine thyroiditis via blockade of the CD40-CD40L interaction. Immunology 90, 421–426 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huber, A. K. et al. Genetically driven target tissue overexpression of CD40: a novel mechanism in autoimmune disease. J. Immunol. 189, 3043–3053 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Lin, J. D. et al. Serum BAFF and thyroid autoantibodies in autoimmune thyroid disease. Clin. Chim. Acta 462, 96–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Lane, L. C. et al. Analysis of BAFF gene polymorphisms in UK Graves’ disease patients. Clin. Endocrinol. 90, 170–174 (2019).

    Article  CAS  Google Scholar 

  109. Campi, I. et al. B cell activating factor (BAFF) and BAFF receptor expression in autoimmune and nonautoimmune thyroid diseases. Thyroid 25, 1043–1049 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Gilbert, J. A. et al. Treatment of autoimmune hyperthyroidism in a murine model of Graves’ disease with tumor necrosis factor-family ligand inhibitors suggests a key role for B cell activating factor in disease pathology. Endocrinology 147, 4561–4568 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Allison, A. C. Mechanisms of action of mycophenolate mofetil. Lupus 14 (Suppl. 1), s2–s8 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Kahaly, G. J. et al. Mycophenolate plus methylprednisolone versus methylprednisolone alone in active, moderate-to-severe Graves’ orbitopathy (MINGO): a randomised, observer-masked, multicentre trial. Lancet Diabetes Endocrinol. 6, 287–298 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Marcocci, C. et al. Selenium and the course of mild Graves’ orbitopathy. N. Engl. J. Med. 364, 1920–1931 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Smith, T. J. et al. Teprotumumab for thyroid-associated ophthalmopathy. N. Engl. J. Med. 376, 1748–1761 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kahaly, G. J., Douglas, R. S., Holt, R. J., Sile, S. & Smith, T. J. Teprotumumab for patients with active thyroid eye disease: a pooled data analysis, subgroup analyses, and off-treatment follow-up results from two randomised, double-masked, placebo-controlled, multicentre trials. Lancet Diabetes Endocrinol. 9, 360–372 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Douglas, R. S. et al. Teprotumumab efficacy, safety, and durability in longer-duration thyroid eye disease and re-treatment: OPTIC-X study. Ophthalmology 129, 438–449 (2022).

    Article  PubMed  Google Scholar 

  117. Burch, H. B. et al. Management of thyroid eye disease: a consensus statement by the American Thyroid Association and the European Thyroid Association. Thyroid 32, 1439–1470 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Amarikwa, L., Mohamed, A., Kim, S. H., Kossler, A. L. & Dosiou, C. Teprotumumab-related hyperglycemia. J. Clin. Endocrinol. Metab. 108, 858–864 (2023).

    Article  PubMed  Google Scholar 

  119. Bartalena, L., Marino, M., Marcocci, C. & Tanda, M. L. Teprotumumab for Graves’ orbitopathy and ototoxicity: moving problems from eyes to ears? J. Endocrinol. Invest. 45, 1455–1457 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Safo, M. B. & Silkiss, R. Z. A case of ulcerative colitis associated with teprotumumab treatment for thyroid eye disease. Am. J. Ophthalmol. Case Rep. 22, 101069 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ashraf, D. C. et al. New-onset of inflammatory bowel disease in a patient treated with teprotumumab for thyroid associated ophthalmopathy. Ophthalmic Plast. Reconstr. Surg. 37, e160–e164 (2021).

    Article  PubMed  Google Scholar 

  122. Hoang, T. D., Nguyen, N. T., Chou, E. & Shakir, M. K. Rapidly progressive cognitive decline associated with teprotumumab in thyroid eye disease. BMJ Case Rep. 14, e242153 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Reff, M. E. et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83, 435–445 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. McCoy, A. N. et al. Rituximab (Rituxan) therapy for severe thyroid-associated ophthalmopathy diminishes IGF-1R+ T cells. J. Clin. Endocrinol. Metab. 99, E1294–1299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Salvi, M. et al. Treatment of Graves’ disease and associated ophthalmopathy with the anti-CD20 monoclonal antibody rituximab: an open study. Eur. J. Endocrinol. 156, 33–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Khanna, D. et al. Rituximab treatment of patients with severe, corticosteroid-resistant thyroid-associated ophthalmopathy. Ophthalmology 117, 133–139.e2 (2010).

    Article  PubMed  Google Scholar 

  127. Stan, M. N. et al. Randomized controlled trial of rituximab in patients with Graves’ orbitopathy. J. Clin. Endocrinol. Metab. 100, 432–441 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Salvi, M. et al. Efficacy of B-cell targeted therapy with rituximab in patients with active moderate to severe Graves’ orbitopathy: a randomized controlled study. J. Clin. Endocrinol. Metab. 100, 422–431 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Stan, M. N. & Salvi, M. MANAGEMENT OF ENDOCRINE DISEASE: rituximab therapy for Graves’ orbitopathy — lessons from randomized control trials. Eur. J. Endocrinol. 176, R101–R109 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Chen, J., Chen, G. & Sun, H. Intravenous rituximab therapy for active Graves’ ophthalmopathy: a meta-analysis. Hormones 20, 279–286 (2021).

    Article  PubMed  Google Scholar 

  131. Vannucchi, G. et al. Efficacy profile and safety of very low-dose rituximab in patients with Graves’ orbitopathy. Thyroid 31, 821–828 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Heemstra, K. A. et al. Rituximab in relapsing Graves’ disease, a phase II study. Eur. J. Endocrinol. 159, 609–615 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. El Fassi, D., Nielsen, C. H., Bonnema, S. J., Hasselbalch, H. C. & Hegedus, L. B lymphocyte depletion with the monoclonal antibody rituximab in Graves’ disease: a controlled pilot study. J. Clin. Endocrinol. Metab. 92, 1769–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Cheetham, T. D. et al. Adjuvant rituximab-exploratory trial in young people with Graves disease. J. Clin. Endocrinol. Metab. 107, 743–754 (2022).

    Article  PubMed  Google Scholar 

  135. Perez-Moreiras, J. V. et al. Efficacy of tocilizumab in patients with moderate-to-severe corticosteroid-resistant Graves orbitopathy: a randomized clinical trial. Am. J. Ophthalmol. 195, 181–190 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Menon, D. & Bril, V. Pharmacotherapy of generalized myasthenia gravis with special emphasis on newer biologicals. Drugs 82, 865–887 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Audia, S. & Bonnotte, B. Emerging therapies in immune thrombocytopenia. J. Clin. Med. 10, 1004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Benatar, M., Wiendl, H., Nowak, R., Zheng, Y. & Macias, W. Batoclimab as induction and maintenance therapy in patients with myasthenia gravis: rationale and study design of a phase 3 clinical trial. BMJ Neurol. Open 6, e000536 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Wang, Y. et al. Batoclimab as an add-on therapy in neuromyelitis optica spectrum disorder patients with acute attacks. Eur. J. Neurol. 30, 195–203 (2023).

    Article  PubMed  Google Scholar 

  140. Kahaly, G. J. et al. Proof-of-concept and randomized, placebo-controlled trials of an fcrn inhibitor, batoclimab, for thyroid eye disease. J. Clin. Endocrinol. Metab. 108, 3122–3134 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gulbins, A. et al. Linsitinib, an IGF-1R inhibitor, attenuates disease development and progression in a model of thyroid eye disease. Front. Endocrinol. 14, 1211473 (2023).

    Article  Google Scholar 

  142. Place, R. F., Krieger, C. C., Neumann, S. & Gershengorn, M. C. Inhibiting thyrotropin/insulin-like growth factor 1 receptor crosstalk to treat Graves’ ophthalmopathy: studies in orbital fibroblasts in vitro. Br. J. Pharmacol. 174, 328–340 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sehgal, S. N. Sirolimus: its discovery, biological properties, and mechanism of action. Transpl. Proc. 35, 7S–14S (2003).

    Article  CAS  Google Scholar 

  144. Zhang, L. et al. Possible targets for nonimmunosuppressive therapy of Graves’ orbitopathy. J. Clin. Endocrinol. Metab. 99, E1183–1190 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Roos, J. C. P., Eglitis, V. & Murthy, R. Inhibition of fibrotic contraction by sirolimus (Rapamycin) in an ex vivo model of thyroid eye disease. Ophthalmic Plast. Reconstr. Surg. 37, 366–371 (2021).

    Article  PubMed  Google Scholar 

  146. Lanzolla, G. et al. Sirolimus as a second-line treatment for Graves’ orbitopathy. J. Endocrinol. Invest. 45, 2171–2180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Stein, J. D. et al. Risk factors for developing thyroid-associated ophthalmopathy among individuals with Graves disease. JAMA Ophthalmol. 133, 290–296 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Nilsson, A., Tsoumani, K. & Planck, T. Statins decrease the risk of orbitopathy in newly diagnosed patients with Graves disease. J. Clin. Endocrinol. Metab. 106, 1325–1332 (2021).

    Article  PubMed  Google Scholar 

  149. Sabini, E. et al. High serum cholesterol is a novel risk factor for Graves’ orbitopathy: results of a cross-sectional study. Thyroid 28, 386–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Lanzolla, G. et al. Relationship between serum cholesterol and Graves’ orbitopathy (GO): a confirmatory study. J. Endocrinol. Invest. 41, 1417–1423 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Lanzolla, G. et al. Statins for Graves’ orbitopathy (STAGO): a phase 2, open-label, adaptive, single centre, randomised clinical trial. Lancet Diabetes Endocrinol. 9, 733–742 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Brix, T. H. & Hegedus, L. Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. Clin. Endocrinol. 76, 457–464 (2012).

    Article  CAS  Google Scholar 

  153. Yin, X., Latif, R., Bahn, R. & Davies, T. F. Genetic profiling in Graves’ disease: further evidence for lack of a distinct genetic contribution to Graves’ ophthalmopathy. Thyroid 22, 730–736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tomer, Y., Barbesino, G., Greenberg, D. A., Concepcion, E. & Davies, T. F. Linkage analysis of candidate genes in autoimmune thyroid disease. III. Detailed analysis of chromosome 14 localizes Graves’ disease-1 (GD-1) close to multinodular goiter-1 (MNG-1). International Consortium for the Genetics of Autoimmune Thyroid Disease. J. Clin. Endocrinol. Metab. 83, 4321–4327 (1998).

    CAS  PubMed  Google Scholar 

  155. Bufalo, N. E. et al. TSHR intronic polymorphisms (rs179247 and rs12885526) and their role in the susceptibility of the Brazilian population to Graves’ disease and Graves’ ophthalmopathy. J. Endocrinol. Invest. 38, 555–561 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Li, H. N., Li, X. R., Du, Y. Y., Yang, Z. F. & Lv, Z. T. The association between Foxp3 polymorphisms and risk of Graves’ disease: a systematic review and meta-analysis of observational studies. Front. Endocrinol. 11, 392 (2020).

    Article  Google Scholar 

  157. Shehjar, F., Afroze, D., Misgar, R. A., Malik, S. A. & Laway, B. A. Association of FoxP3 promoter polymorphisms with the risk of Graves’ disease in ethnic Kashmiri population. Gene 672, 88–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, D. et al. MiR-23a-3p-regulated abnormal acetylation of FOXP3 induces regulatory T cell function defect in Graves’ disease. Biol. Chem. 400, 639–650 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Simmonds, M. J. GWAS in autoimmune thyroid disease: redefining our understanding of pathogenesis. Nat. Rev. Endocrinol. 9, 277–287 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Hou, J., Tang, Y., Chen, Y. & Chen, D. The role of the microbiota in Graves’ disease and Graves’ orbitopathy. Front. Cell Infect. Microbiol. 11, 739707 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mateu-Salat, M., Urgell, E. & Chico, A. SARS-CoV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. J. Endocrinol. Invest. 43, 1527–1528 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lanzolla, G., Marcocci, C. & Marino, M. Graves’ disease and Graves’ orbitopathy following COVID-19. J. Endocrinol. Invest. 44, 2011–2012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Davies, T. F. Infection and autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 93, 674–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Lanzolla, G., Marcocci, C. & Marino, M. Oxidative stress in Graves disease and graves orbitopathy. Eur. Thyroid. J. 9, 40–50 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lanzolla, G., Marino, M. & Marcocci, C. Selenium in the treatment of Graves’ hyperthyroidism and eye disease. Front. Endocrinol. 11, 608428 (2020).

    Article  Google Scholar 

  166. Wiersinga, W. et al. Predictive score for the development or progression of Graves’ orbitopathy in patients with newly diagnosed Graves’ hyperthyroidism. Eur. J. Endocrinol. 178, 635–643 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Le Moli, R. et al. Type 2 diabetic patients with Graves’ disease have more frequent and severe Graves’ orbitopathy. Nutr. Metab. Cardiovasc. Dis. 25, 452–457 (2015).

    Article  PubMed  Google Scholar 

  168. Naselli, A. et al. Evidence that baseline levels of low-density lipoproteins cholesterol affect the clinical response of graves’ ophthalmopathy to parenteral corticosteroids. Front. Endocrinol. 11, 609895 (2020).

    Article  Google Scholar 

  169. Wiesweg, B., Johnson, K. T., Eckstein, A. K. & Berchner-Pfannschmidt, U. Current insights into animal models of Graves’ disease and orbitopathy. Horm. Metab. Res. 45, 549–555 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Nagayama, Y. et al. A novel murine model of Graves’ hyperthyroidism with intramuscular injection of adenovirus expressing the thyrotropin receptor. J. Immunol. 168, 2789–2794 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Costagliola, S. et al. Genetic immunization of outbred mice with thyrotropin receptor cDNA provides a model of Graves’ disease. J. Clin. Invest. 105, 803–811 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bao, Y. et al. Cre-loxP system-based mouse model for investigating Graves’ disease and associated orbitopathy. Thyroid 33, 1358–1367 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Fassbender, J., Holthoff, H. P., Li, Z. & Ungerer, M. Therapeutic effects of short cyclic and combined epitope peptides in a long-term model of Graves’ disease and orbitopathy. Thyroid 29, 258–267 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Holthoff, H. P. et al. Cyclic peptides for effective treatment in a long-term model of Graves disease and orbitopathy in female mice. Endocrinology 158, 2376–2390 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.L. and F.M. researched data for the article. All authors contributed substantially to the discussion of the content. G.L., M.M. and F.M. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Francesca Menconi.

Ethics declarations

Competing interests

M.M. is a member of the Advisory Board of Horizon Pharma. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Rauf Latif, who co-reviewed with Xiang PingPing; Elizabeth Pearce; and Onyebuchi Okosieme for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

Relevant studies published between January 1, 2000, and January 1, 2023, were identified from PubMed, EMBASE, Cochrane Library and the ClinicalTrials.gov registry, using the search terms “Graves’ disease treatment”, “Graves’ disease therapy”, “Graves’ disease management”, “Graves’ disease pathogenesis”, “Graves’ orbitopathy”, “Graves’ ophthalmopathy”, “thyroid eye disease”, “thyroid-associated ophthalmopathy”, “thyroid ophthalmopathy”, “endocrine ophthalmopathy”. In vitro studies, preclinical studies, retrospective studies and randomized clinical trials performed in Europe and the USA were included. Only English-language articles were included. Only peer-reviewed journal articles were included.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanzolla, G., Marinò, M. & Menconi, F. Graves disease: latest understanding of pathogenesis and treatment options. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-01016-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-01016-5

  • Springer Nature Limited

Navigation