Skip to main content

Advertisement

Log in

Dual HER2 inhibition: mechanisms of synergy, patient selection, and resistance

  • Review Article
  • Published:

From Nature Reviews Clinical Oncology

View current issue Sign up to alerts
  • 34 Altmetric

Abstract

HER2-targeted therapies for patients with HER2+ breast cancer are rapidly evolving, offering a range of more complex and personalized treatment options. Currently, an array of anti-HER2 monoclonal antibodies, tyrosine kinase inhibitors and antibody–drug conjugates are administered, sometimes alongside chemotherapy or endocrine therapy, both in curative and palliative contexts. However, the heterogeneous nature of HER2+ breast cancer demands a deeper understanding of disease biology and its role in responsiveness to novel HER2-targeted agents, as well as non-HER2-targeted therapies, in order to optimize patient outcomes. In this Review, we revisit the mechanisms of action of HER2-targeted agents, examine the evidence supporting the use of dual HER2 blockade in patients with HER2-amplified tumours, and explore the role of biomarkers in guiding future treatment strategies. We also discuss potential implications for the future treatment of patients with HER2+ breast cancer.

Key points

  • HER2-targeted therapies function by blocking activation of the oncogenic tyrosine kinase signalling pathways downstream of HER2 and inducing immune-mediated cell death.

  • Dual HER2 inhibition can overcome resistance to single-agent blockade through several mechanisms, including more potent inhibition of downstream signalling pathways, overcoming limited HER2 binding, and augmenting HER2 receptor downregulation and degradation.

  • Regimens including trastuzumab plus pertuzumab improve pathological complete response and long-term event rates in patients with stage II–III HER2+ breast cancer receiving neoadjuvant or adjuvant therapy, respectively, compared with trastuzumab monotherapy.

  • Compared with single-agent HER2 inhibition, dual inhibition improves the outcomes of patients with HER2+ metastatic breast cancer in both the first-line and treatment-refractory settings, thus underscoring the importance of oncogenic HER2 signalling throughout the course of disease.

  • HER2+ breast cancer is a biologically heterogeneous disease. Biomarkers including level of HER2 expression, luminal biology, tumour cell proliferation and tumour immune infiltration all merit further investigation as possible methods of guiding the selection of HER2-targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Timeline of approvals for HER2-targeted agents for use in patients with HER2+ advanced-stage cancers.
Fig. 2: Mechanisms of action of FDA-approved HER2-targeted agents.
Fig. 3: The biological spectrum of treatment responsiveness in HER2+ breast cancers.

Similar content being viewed by others

References

  1. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Chang, J. C. HER2 inhibition: from discovery to clinical practice. Clin. Cancer Res. 13, 1–3 (2007).

    Article  PubMed  Google Scholar 

  3. Leavy, O. Therapeutic antibodies: past, present and future. Nat. Rev. Immunol. 10, 297–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Di Fiore, P. P. et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 237, 178–182 (1987).

    Article  PubMed  Google Scholar 

  5. Fendly, B. M. et al. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res. 50, 1550–1558 (1990).

    CAS  PubMed  Google Scholar 

  6. Hancock, M. C. et al. A monoclonal antibody against the c-erbB-2 protein enhances the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res. 51, 4575–4580 (1991).

    CAS  PubMed  Google Scholar 

  7. Harwerth, I. M., Wels, W., Schlegel, J., Müller, M. & Hynes, N. E. Monoclonal antibodies directed to the erbB-2 receptor inhibit in vivo tumour cell growth. Br. J. Cancer 68, 1140–1145 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Drebin, J. A., Link, V. C., Stern, D. F., Weinberg, R. A. & Greene, M. I. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 41, 697–706 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Lewis, G. D. et al. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol. Immunother. 37, 255–263 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shak, S. Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group. Semin. Oncol. 26, 71–77 (1999).

    CAS  PubMed  Google Scholar 

  11. Cobleigh, M. A. et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 17, 2639 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Baselga, J. et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14, 737–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Trastuzumab for early-stage, HER2-positive breast cancer: a meta-analysis of 13 864 women in seven randomised trials. Lancet. Oncol. 22, 1139–1150 (2021).

    Article  Google Scholar 

  15. Oh, D. Y. & Bang, Y. J. HER2-targeted therapies – a role beyond breast cancer. Nat. Rev. Clin. Oncol. 17, 33–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Yarden, Y. The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur. J. Cancer 37, 3–8 (2001).

    Article  Google Scholar 

  17. Moasser, M. M. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26, 6469–6487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Swain, S. M., Shastry, M. & Hamilton, E. Targeting HER2-positive breast cancer: advances and future directions. Nat. Rev. Drug. Discov. 22, 101–126 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Mandó, P., Rivero, S. G., Rizzo, M. M., Pinkasz, M. & Levy, E. M. Targeting ADCC: a different approach to HER2 breast cancer in the immunotherapy era. Breast 60, 15–25 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Junttila, T. T., Li, G., Parsons, K., Phillips, G. L. & Sliwkowski, M. X. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat. 128, 347–356 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Ogitani, Y., Hagihara, K., Oitate, M., Naito, H. & Agatsuma, T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 107, 1039–1046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rugo, H. S. et al. Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: a phase 3 randomized clinical trial. JAMA Oncol. 7, 573–584 (2021).

    Article  PubMed  Google Scholar 

  24. Tarantino, P. et al. Margetuximab for the treatment of HER2-positive metastatic breast cancer. Expert. Opin. Biol. Ther. 21, 127–133 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 21, 519–530 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Tarantino, P. et al. Aiming at a tailored cure for ERBB2-positive metastatic breast cancer: a review. JAMA Oncol. 8, 629–635 (2022).

    Article  PubMed  Google Scholar 

  27. Costa, R. L. B. & Czerniecki, B. J. Clinical development of immunotherapies for HER2+ breast cancer: a review of HER2-directed monoclonal antibodies and beyond. NPJ Breast Cancer 6, 10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tarantino, P. et al. Antibody-drug conjugates: smart chemotherapy delivery across tumor histologies. CA Cancer J. Clin. 72, 165–182 (2021).

    Article  PubMed  Google Scholar 

  29. Mosele, F. et al. Trastuzumab deruxtecan in metastatic breast cancer with variable HER2 expression: the phase 2 DAISY trial. Nat. Med. 29, 2110–2120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tarcsa, E., Guffroy, M. R., Falahatpisheh, H., Phipps, C. & Kalvass, J. C. Antibody-drug conjugates as targeted therapies: are we there yet? A critical review of the current clinical landscape. Drug. Discov. Today.: Technol. 37, 13–22 (2020).

    Article  PubMed  Google Scholar 

  31. Colombo, R., Barnscher, S. D. & Rich, J. R. Revisiting the dogma of antibody drug conjugates (ADCs): emerging data challenge the benefit of linker stability and the primacy of payload delivery [abstract]. Cancer Res. 83 (Suppl. 7), 1538 (2023).

    Article  Google Scholar 

  32. Pohlmann, P. R., Mayer, I. A. & Mernaugh, R. Resistance to trastuzumab in breast cancer. Clin. Cancer Res. 15, 7479–7491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Franklin, M. C. et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5, 317–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Nahta, R., Hung, M.-C. & Esteva, F. J. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res. 64, 2343–2346 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Sridhar, S. S., Seymour, L. & Shepherd, F. A. Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol. 4, 397–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Schlam, I. & Swain, S. M. HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now. NPJ Breast Cancer 7, 56 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rusnak, D. W. et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther. 1, 85–94 (2001).

    CAS  PubMed  Google Scholar 

  38. Xia, W. et al. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 24, 6213–6221 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Konecny, G. E. et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 66, 1630–1639 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Scaltriti, M. et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28, 803–814 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Canonici, A. et al. Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer. Oncotarget 4, 1592–1605 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee, P. et al. In vivo activity of ARRY-380, a potent, small molecule inhibitor of ErbB2 in combination with trastuzumab, docetaxel or bevacizumab [abstract]. Cancer Res. 69 (Suppl. 24), 5104 (2009).

    Article  Google Scholar 

  43. Baselga, J. et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379, 633–640 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robidoux, A. et al. Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): an open-label, randomised phase 3 trial. Lancet Oncol. 14, 1183–1192 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Carey, L. A. et al. Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J. Clin. Oncol. 34, 542–549 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Gianni, L. et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 13, 25–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. von Minckwitz, G. et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N. Engl. J. Med. 377, 122–131 (2017).

    Article  Google Scholar 

  48. Piccart-Gebhart, M. et al. Adjuvant lapatinib and trastuzumab for early human epidermal growth factor receptor 2-positive breast cancer: results from the randomized phase III Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization Trial. J. Clin. Oncol. 34, 1034–1042 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. van Ramshorst, M. S. et al. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 19, 1630–1640 (2018).

    Article  PubMed  Google Scholar 

  50. van der Voort, A. et al. Three-year follow-up of neoadjuvant chemotherapy with or without anthracyclines in the presence of dual ERBB2 blockade in patients with ERBB2-positive breast cancer: a secondary analysis of the TRAIN-2 randomized, phase 3 trial. JAMA Oncol. 7, 978–984 (2021).

    Article  PubMed  Google Scholar 

  51. Schneeweiss, A. et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. 24, 2278–2284 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Schneeweiss, A. et al. Long-term efficacy analysis of the randomised, phase II TRYPHAENA cardiac safety study: evaluating pertuzumab and trastuzumab plus standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer. Eur. J. Cancer 89, 27–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Rimawi, M. F. et al. Multicenter phase II study of neoadjuvant lapatinib and trastuzumab with hormonal therapy and without chemotherapy in patients with human epidermal growth factor receptor 2-overexpressing breast cancer: TBCRC 006. J. Clin. Oncol. 31, 1726–1731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rimawi, M. F. et al. TBCRC023: a randomized phase II neoadjuvant trial of lapatinib plus trastuzumab without chemotherapy for 12 versus 24 weeks in patients with HER2-positive breast cancer. Clin. Cancer Res. 26, 821–827 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Llombart-Cussac, A. et al. HER2-enriched subtype as a predictor of pathological complete response following trastuzumab and lapatinib without chemotherapy in early-stage HER2-positive breast cancer (PAMELA): an open-label, single-group, multicentre, phase 2 trial. Lancet Oncol. 18, 545–554 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Nitz, U. A. et al. De-escalation strategies in HER2-positive early breast cancer (EBC): final analysis of the WSG-ADAPT HER2+/HR− phase II trial: efficacy, safety, and predictive markers for 12 weeks of neoadjuvant dual blockade with trastuzumab and pertuzumab ± weekly paclitaxel. Ann. Oncol. 28, 2768–2772 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Pérez-García, J. M. et al. Chemotherapy de-escalation using an 18F-FDG-PET-based pathological response-adapted strategy in patients with HER2-positive early breast cancer (PHERGain): a multicentre, randomised, open-label, non-comparative, phase 2 trial. Lancet Oncol. 22, 858–871 (2021).

    Article  PubMed  Google Scholar 

  58. Guarneri, V. et al. De-escalated therapy for HR+/HER2+ breast cancer patients with Ki67 response after 2-week letrozole: results of the PerELISA neoadjuvant study. Ann. Oncol. 30, 921–926 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pérez-García, J. M. et al. 3-year invasive disease-free survival with chemotherapy de-escalation using an 18F-FDG-PET-based, pathological complete response-adapted strategy in HER2-positive early breast cancer (PHERGain): a randomised, open-label, phase 2 trial. Lancet 403, 1649–1659 (2024).

    Article  PubMed  Google Scholar 

  60. Hurvitz, S. A. et al. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 19, 115–126 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Hurvitz, S. A. et al. Neoadjuvant trastuzumab emtansine and pertuzumab in human epidermal growth factor receptor 2-positive breast cancer: three-year outcomes from the phase III KRISTINE study. J. Clin. Oncol. 37, 2206–2216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cortazar, P. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384, 164–172 (2014).

    Article  PubMed  Google Scholar 

  63. Huober, J. et al. Identifying breast cancer patients at risk of relapse despite pathological complete response after neoadjuvant therapy. NPJ Breast Cancer 9, 23 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van Mackelenbergh, M. T. et al. Pathologic complete response and individual patient prognosis after neoadjuvant chemotherapy plus anti-human epidermal growth factor receptor 2 therapy of human epidermal growth factor receptor 2-positive early breast cancer. J. Clin. Oncol. 41, 2998–3008 (2023).

    Article  PubMed  Google Scholar 

  65. Piccart, M. et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer in the APHINITY trial: 6 years’ follow-up. J. Clin. Oncol. 39, 1448–1457 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Loibl, S. et al. Adjuvant pertuzumab and trastuzumab in patients with early HER-2 positive breast cancer in APHINITY: 8.4 years’ follow-up [abstract VP6-2022]. Ann. Oncol. 33, 986–987 (2022).

    Article  Google Scholar 

  67. Moreno-Aspitia, A. et al. Updated results from the international phase III ALTTO trial (BIG 2-06/Alliance N063D). Eur. J. Cancer 148, 287–296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baselga, J. et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 366, 109–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 372, 724–734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Murthy, R. K. et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N. Engl. J. Med. 382, 597–609 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Johnston, S. R. D. et al. Phase III, randomized study of dual human epidermal growth factor receptor 2 (HER2) blockade with lapatinib plus trastuzumab in combination with an aromatase inhibitor in postmenopausal women with HER2-positive, hormone receptor-positive metastatic breast cancer: updated results of ALTERNATIVE. J. Clin. Oncol. 39, 79–89 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Rimawi, M. et al. First-line trastuzumab plus an aromatase inhibitor, with or without pertuzumab, in human epidermal growth factor receptor 2-positive and hormone receptor-positive metastatic or locally advanced breast cancer (PERTAIN): a randomized, open-label phase II trial. J. Clin. Oncol. 36, 2826–2835 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Perez, E. A. et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the phase III MARIANNE study. J. Clin. Oncol. 35, 141–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Hamilton, E. et al. Dose-expansion study of trastuzumab deruxtecan as monotherapy or combined with pertuzumab in patients with metastatic human epidermal growth factor receptor 2-positive (HER2+) breast cancer in DESTINY-breast07 (DB-07) [abstract]. Cancer Res. 83 (Suppl. 5), PD18-11 (2023).

    Article  Google Scholar 

  75. Andre, F. et al. DESTINY-breast07: dose-expansion interim analysis of T-DXd monotherapy and T-DXd + pertuzumab in patients with previously untreated HER2+ mBC [abstract]. J. Clin. Oncol. 42 (Suppl. 16), 1009 (2024).

    Article  Google Scholar 

  76. Hurvitz, S. A. et al. HER2CLIMB-02: primary analysis of a randomized, double–blind phase 3 trial of tucatinib and trastuzumab emtansine for previously treated HER2-positive metastatic breast cancer [abstract]. Cancer Res. 84 (Suppl. 9), GS01-10 (2024).

  77. Lin, N. U. et al. Tucatinib vs placebo, both in combination with trastuzumab and capecitabine, for previously treated ERBB2 (HER2)-positive metastatic breast cancer in patients with brain metastases: updated exploratory analysis of the HER2CLIMB randomized clinical trial. JAMA Oncol. 9, 197–205 (2023).

    Article  PubMed  Google Scholar 

  78. Lin, N. U. et al. Pertuzumab plus high-dose trastuzumab for HER2-positive breast cancer with brain metastases: PATRICIA final efficacy data. NPJ Breast Cancer 9, 94 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Montemurro, F. et al. Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer and brain metastases: exploratory final analysis of cohort 1 from KAMILLA, a single-arm phase IIIb clinical trial. Ann. Oncol. 31, 1350–1358 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Bartsch, R. et al. Trastuzumab deruxtecan in HER2-positive breast cancer with brain metastases: a single-arm, phase 2 trial. Nat. Med. 28, 1840–1847 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schettini, F. & Prat, A. Dissecting the biological heterogeneity of HER2-positive breast cancer. Breast 59, 339–350 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  CAS  Google Scholar 

  83. Ferrari, A. et al. A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers. Nat. Commun. 7, 12222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Perez, E. A. et al. Intrinsic subtype and therapeutic response among HER2-positive breast tumors from the NCCTG (Alliance) N9831 trial. J. Natl Cancer Inst. 109, djw207 (2017).

    Article  PubMed  Google Scholar 

  85. Wolff, A. C. et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 36, 2105–2122 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Wolff, A. C. et al. Human epidermal growth factor receptor 2 testing in breast cancer: ASCO–College of American Pathologists Guideline Update. J. Clin. Oncol. 41, 3867–3872 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Griggs, J. J. et al. Discordance between original and central laboratories in ER and HER2 results in a diverse, population-based sample. Breast Cancer Res. Treat. 161, 375–384 (2017).

    Article  PubMed  Google Scholar 

  88. Tarantino, P. et al. HER2-low breast cancer: pathological and clinical landscape. J. Clin. Oncol. 38, 1951–1962 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Schettini, F. et al. Clinical, pathological, and PAM50 gene expression features of HER2-low breast cancer. NPJ Breast Cancer 7, 1 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lewis, J. T. et al. Analysis of intratumoral heterogeneity and amplification status in breast carcinomas with equivocal (2+) HER-2 immunostaining. Am. J. Clin. Pathol. 124, 273–281 (2005).

    Article  PubMed  Google Scholar 

  91. Filho, O. M. et al. Impact of HER2 heterogeneity on treatment response of early-stage HER2-positive breast cancer: phase II neoadjuvant clinical trial of T-DM1 combined with pertuzumab. Cancer Discov. 11, 2474–2487 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vance, G. H. et al. Genetic heterogeneity in HER2 testing in breast cancer: panel summary and guidelines. Arch. Pathol. Lab. Med. 133, 611–612 (2009).

    Article  PubMed  Google Scholar 

  93. A Prat et al. 2022 Development and validation of the new HER2DX assay for predicting pathological response and survival outcome in early-stage HER2-positive breast cancer eBioMedicine 75 103801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brasó-Maristany, F. et al. HER2DX ERBB2 mRNA expression in advanced HER2-positive breast cancer treated with T-DM1. J. Natl Cancer Inst. 115, 332–336 (2022).

    Article  PubMed Central  Google Scholar 

  95. de Haas, S. L. et al. Tumor biomarkers and efficacy in patients treated with trastuzumab emtansine + pertuzumab versus standard of care in HER2-positive early breast cancer: an open-label, phase III study (KRISTINE). Breast Cancer Res. 25, 2 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Loibl, S. et al. Dual HER2-blockade with pertuzumab and trastuzumab in HER2-positive early breast cancer: a subanalysis of data from the randomized phase III GeparSepto trial. Ann. Oncol. 28, 497–504 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Guarneri, V. et al. HER2DX genomic test in HER2-positive/hormone receptor-positive breast cancer treated with neoadjuvant trastuzumab and pertuzumab: a correlative analysis from the PerELISA trial. eBioMedicine 85, 104320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Griguolo, G. et al. ERBB2 mRNA expression and response to ado-trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Cancers 12, 1902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nuciforo, P. et al. High HER2 protein levels correlate with increased survival in breast cancer patients treated with anti-HER2 therapy. Mol. Oncol. 10, 138–147 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Yardley, D. A. et al. Quantitative measurement of HER2 expression in breast cancers: comparison with ‘real-world’ routine HER2 testing in a multicenter Collaborative Biomarker Study and correlation with overall survival. Breast Cancer Res. 17, 41 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Prat, A. & Perou, C. M. Deconstructing the molecular portraits of breast cancer. Mol. Oncol. 5, 5–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Prat, A. et al. Molecular features and survival outcomes of the intrinsic subtypes within HER2-positive breast cancer. J. Natl Cancer Inst. 106, https://doi.org/10.1093/jnci/dju152 (2014).

  104. Schettini, F. et al. HER2-enriched subtype and pathological complete response in HER2-positive breast cancer: a systematic review and meta-analysis. Cancer Treat. Rev. 84, https://doi.org/10.1016/j.ctrv.2020.101965 (2020).

  105. Dieci, M. V. et al. Integrated evaluation of PAM50 subtypes and immune modulation of pCR in HER2-positive breast cancer patients treated with chemotherapy and HER2-targeted agents in the CherLOB trial. Ann. Oncol. 27, 1867–1873 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Krop, I. E. et al. Genomic correlates of response to adjuvant trastuzumab (H) and pertuzumab (P) in HER2+ breast cancer (BC): biomarker analysis of the APHINITY trial [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 1012 (2019).

    Article  Google Scholar 

  107. Nitz, U. et al. De-escalated neoadjuvant pertuzumab plus trastuzumab therapy with or without weekly paclitaxel in HER2-positive, hormone receptor-negative, early breast cancer (WSG-ADAPT-HER2+/HR−): survival outcomes from a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 23, 625–635 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Perez, E. A. et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J. Clin. Oncol. 32, 3744–3752 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hwang, K.-T. et al. Impact of breast cancer subtypes on prognosis of women with operable invasive breast cancer: a population-based study using SEER database. Clin. Cancer Res. 25, 1970–1979 (2019).

    Article  PubMed  Google Scholar 

  110. Cameron, D. et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 389, 1195–1205 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Glück, S. et al. TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine ± trastuzumab. Breast Cancer Res. Treat. 132, 781–791 (2012).

    Article  PubMed  Google Scholar 

  112. Baselga, J. et al. Biomarker analyses in CLEOPATRA: a phase III, placebo-controlled study of pertuzumab in human epidermal growth factor receptor 2-positive, first-line metastatic breast cancer. J. Clin. Oncol. 32, 3753–3761 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Salgado, R. et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol. 1, 448–455 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Prat, A. et al. A multivariable prognostic score to guide systemic therapy in early-stage HER2-positive breast cancer: a retrospective study with an external evaluation. Lancet Oncol. 21, 1455–1464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fernandez-Martinez, A. et al. Prognostic and predictive value of immune-related gene expression signatures vs tumor-infiltrating lymphocytes in early-stage ERBB2/HER2-positive breast cancer: a correlative analysis of the CALGB 40601 and PAMELA trials. JAMA Oncol. 9, 490–499 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Shepherd, J. H. et al. CALGB 40603 (Alliance): long-term outcomes and genomic correlates of response and survival after neoadjuvant chemotherapy with or without carboplatin and bevacizumab in triple-negative breast cancer. J. Clin. Oncol. 40, 1323–1334 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rediti, M. et al. Immunological and clinicopathological features predict HER2-positive breast cancer prognosis in the neoadjuvant NeoALTTO and CALGB 40601 randomized trials. Nat. Commun. 14, 7053 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Luen, S. J. et al. Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol. 18, 52–62 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Kos, Z. et al. Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer. NPJ Breast Cancer 6, 17 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. A Fernandez-Martinez et al. 2024 Tumor intrinsic subtypes and gene expression signatures in early-stage ERBB2/HER2-positive breast cancer: a pooled analysis of CALGB 40601, NeoALTTO, and NSABP B-41 trials JAMA Oncol. 10 603 611.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Di Cosimo, S. et al. The 41-gene classifier TRAR predicts response of HER2 positive breast cancer patients in the NeoALTTO study. Eur. J. Cancer 118, 1–9 (2019).

    Article  PubMed  Google Scholar 

  122. Triulzi, T. et al. The TRAR gene classifier to predict response to neoadjuvant therapy in HER2-positive and ER-positive breast cancer patients: an explorative analysis from the NeoSphere trial. Mol. Oncol. 16, 2355–2366 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Bueno-Muiño, C. et al. Assessment of a genomic assay in patients with ERBB2-positive breast cancer following neoadjuvant trastuzumab-based chemotherapy with or without pertuzumab. JAMA Oncol. 9, 841–846 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Tolaney, S. M. et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer: final 10-year analysis of the open-label, single-arm, phase 2 APT trial. Lancet Oncol. 24, 273–285 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Waks, A. G. et al. Assessment of the HER2DX assay in patients with ERBB2-positive breast cancer treated with neoadjuvant paclitaxel, trastuzumab, and pertuzumab. JAMA Oncol. 9, 835–840 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Villacampa, G. et al. Association of HER2DX with pathological complete response and survival outcomes in HER2-positive breast cancer. Ann. Oncol. 34, 783–795 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Marín-Aguilera, M. et al. Analytical validation of HER2DX genomic test for early-stage HER2-positive breast cancer. ESMO Open. 9, 102903 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Villacampa, G. et al. Prognostic value of HER2DX in early-stage HER2-positive breast cancer: a comprehensive analysis of 757 patients in the Sweden Cancerome Analysis Network-Breast dataset (SCAN-B). ESMO Open. 9, 102388 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tarantino, P. et al. Adjuvant trastuzumab emtansine versus paclitaxel plus trastuzumab for stage I human epidermal growth factor receptor 2-positive breast cancer: 5-year results and correlative analyses from ATEMPT. J. Clin. Oncol. https://doi.org/10.1200/JCO.23.02170 (2024).

    Article  PubMed  Google Scholar 

  130. Llombart-Cussac, A. HER2DX genomic assay in HER2-positive early breast cancer treated with trastuzumab and pertuzumab: a correlative analysis from PHERGain phase II trial. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-24-0464 (2024).

    Article  PubMed  Google Scholar 

  131. Bianchini, G. et al. Biomarker analysis of the NeoSphere study: pertuzumab, trastuzumab, and docetaxel versus trastuzumab plus docetaxel, pertuzumab plus trastuzumab, or pertuzumab plus docetaxel for the neoadjuvant treatment of HER2-positive breast cancer. Breast Cancer Res. 19, 16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Krop, I. E. et al. Prediction of benefit from adjuvant pertuzumab by 80-gene signature in the APHINITY (BIG 4-11) trial. JCO Precis. Oncol. 8, e2200667 (2024).

    Article  PubMed  Google Scholar 

  133. Antonarelli, G. et al. Research and clinical landscape of bispecific antibodies for the treatment of solid malignancies. Pharmaceuticals (Basel) 14, https://doi.org/10.3390/ph14090884 (2021).

  134. Weisser, N. E. et al. An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat. Commun. 14, 1394 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Meric-Bernstam, F. et al. Zanidatamab, a novel bispecific antibody, for the treatment of locally advanced or metastatic HER2-expressing or HER2-amplified cancers: a phase 1, dose-escalation and expansion study. Lancet Oncol. 23, 1558–1570 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Li, B. T. et al. A phase 1/2 study of a first-in-human immune-stimulating antibody conjugate (ISAC) BDC-1001 in patients with advanced HER2-expressing solid tumors [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 2538 (2023).

    Article  Google Scholar 

  137. Solinas, C., Aiello, M., Migliori, E., Willard-Gallo, K. & Emens, L. A. Breast cancer vaccines: heeding the lessons of the past to guide a path forward. Cancer Treat. Rev. 84, 101947 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Hegde, M. et al. Autologous HER2-specific CAR T cells after lymphodepletion for advanced sarcoma: a phase 1 trial. Nat. Cancer 5, 880–894 (2024).

    Article  CAS  PubMed  Google Scholar 

  139. de Azambuja, E. et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 15, 1137–1146 (2014).

    Article  PubMed  Google Scholar 

  140. Fernandez-Martinez, A. et al. Survival, pathologic response, and genomics in CALGB 40601 (Alliance), a neoadjuvant phase III trial of paclitaxel-trastuzumab with or without lapatinib in HER2-positive breast cancer. J. Clin. Oncol. 38, 4184–4193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rastogi, P. et al. Long-term outcomes of dual vs single HER2-directed neoadjuvant therapy in NSABP B-41. Breast Cancer Res. Treat. 199, 243–252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gianni, L. et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial. Lancet Oncol. 17, 791–800 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Guarneri, V. et al. Preoperative chemotherapy plus trastuzumab, lapatinib, or both in human epidermal growth factor receptor 2-positive operable breast cancer: results of the randomized phase II CHER-LOB study. J. Clin. Oncol. 30, 1989–1995 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Guarneri, V. et al. Trastuzumab-lapatinib as neoadjuvant therapy for HER2-positive early breast cancer: survival analyses of the CHER-Lob trial. Eur. J. Cancer 153, 133–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Gavilá, J. et al. Safety, activity, and molecular heterogeneity following neoadjuvant non-pegylated liposomal doxorubicin, paclitaxel, trastuzumab, and pertuzumab in HER2-positive breast cancer (Opti-HER HEART): an open-label, single-group, multicenter, phase 2 trial. BMC Med. 17, 8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Waks, A. G. et al. A prospective trial of treatment de-escalation following neoadjuvant paclitaxel/trastuzumab/pertuzumab in HER2-positive breast cancer. NPJ Breast Cancer 8, 63 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pascual, T. et al. 95P PAM50 HER2-enriched phenotype as a predictor of early response to neoadjuvant lapatinib plus trastuzumab HER2-positive breast cancer: survival results of the SOLTI-PAMELA study. Ann. Oncol. 33, S168 (2022).

    Article  Google Scholar 

  148. Gluz, O. et al. Efficacy of endocrine therapy plus trastuzumab and pertuzumab vs de-escalated chemotherapy in patients with hormone receptor-positive/ERBB2-positive early breast cancer: the neoadjuvant WSG-TP-II randomized clinical trial. JAMA Oncol. 9, 946–954 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Cortes, J. et al. 3-year invasive disease-free survival (iDFS) of the strategy-based, randomized phase II PHERGain trial evaluating chemotherapy (CT) de-escalation in human epidermal growth factor receptor 2-positive (HER2[+]) early breast cancer (EBC) [abstract]. J. Clin. Oncol. 41 (Suppl. 17), LBA506 (2023).

    Article  Google Scholar 

  150. Clark, A. S. et al. Neoadjuvant T-DM1/pertuzumab and paclitaxel/trastuzumab/pertuzumab for HER2+ breast cancer in the adaptively randomized I-SPY2 trial. Nat. Commun. 12, 6428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Arpino, G. et al. Pertuzumab, trastuzumab, and an aromatase inhibitor for HER2-positive and hormone receptor-positive metastatic or locally advanced breast cancer: PERTAIN final analysis. Clin. Cancer Res. 29, 1468–1476 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Blackwell, K. L. et al. Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 study. J. Clin. Oncol. 30, 2585–2592 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Blackwell, K. L. et al. Randomized study of lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J. Clin. Oncol. 28, 1124–1130 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Zhang, J. et al. First-in-human HER2-targeted bispecific antibody KN026 for the treatment of patients with HER2-positive metastatic breast cancer: results from a phase I study. Clin. Cancer Res. 28, 618–628 (2022).

    Article  CAS  PubMed  Google Scholar 

  155. Jhaveri, K. et al. Preliminary results from a phase I study using the bispecific, human epidermal growth factor 2 (HER2)-targeting antibody-drug conjugate (ADC) zanidatamab zovodotin (ZW49) in solid cancers [abstract 460MO]. Ann. Oncol. 33 (Suppl. 7), S749–S750 (2022).

    Article  Google Scholar 

  156. Pegram, M. D. et al. First-in-human, phase 1 dose-escalation study of biparatopic anti-HER2 antibody–drug conjugate MEDI4276 in patients with HER2-positive advanced breast or gastric cancer. Mol. Cancer Ther. 20, 1442–1453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Garcia (bio-graphics scientific visualization, Barcelona, Spain) for assistance with preparation of Fig. 3, and V. Hope Goldstein (Dana-Farber Cancer Institute, Boston, MA) for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.G.W., P.T. and O.M.-S. researched data for the manuscript, all authors made a substantial contribution to discussion of content, A.G.W., P.T. and O.M.-S. wrote the manuscript, and all authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Aleix Prat.

Ethics declarations

Competing interests

A.G.W. has acted as a speaker for AstraZeneca and as a consultant/adviser to AMBRX and AstraZeneca and has received institutional research funding from Genentech, Gilead, Macrogenics and Merck. P.T. has acted as an adviser and/or consultant to AstraZeneca, Daiichi Sankyo, Genentech, Gilead, Lilly, Menarini/Steamline, Novartis and Roche, and has received institutional research funding from AstraZeneca. F.B.-M. reports patents filed as a co-inventor (PCT/EP2022/086493, PCT/EP2023/060810, EP23382703 and EP23383369), and part-time employment by Reveal Genomics. T.P. has acted as a speaker for AstraZeneca, Pfizer and Novartis, and has acted as a consultant to Novartis. J.C. has acted as a consultant and/or adviser to Abbvie, AstraZeneca, Bioasis, Biocon, BioInvent, Biontech, Boehringer Ingelheim, BridgeBio, Circle Pharma, Clovis Oncology, Daiichi Sankyo, Ellipses, Expres2ion Biotechnologies, Gemoab, Gilead, Hibercell, Jazz Pharmaceuticals, Lilly, Merck Sharp & Dohme, Menarini, Reveal Genomics, Roche, Seattle Genetics, Scorpion Therapeutics and Zymeworks; has received honoraria from AstraZeneca, Daiichi Sankyo, Eisai, Gilead, Lilly, Merck Sharp & Dohme, Novartis, Pfizer, Roche and Stemline Therapeutics; has received institutional research funding from Ariad Pharmaceuticals, AstraZeneca, Baxalta GMBH/Servier Affaires, Bayer, Eisai, Guardant Health, Hoffmann-La Roche, Merck Sharp & Dohme, Pfizer, Piqur Therapeutics, Queen Mary University of London and Roche Iqvia; owns stock in MAJ3 Capital (and a relative owns stock in Leuko); has received travel support from AstraZeneca, Daiichi Sankyo, Eisai, Gilead, Merck Sharp & Dohme, Novartis, Pfizer, Roche and Stemline Therapeutics; and is listed as a co-inventor on patents WO 2014/199294A and US 2019/ 0338368 A1. S.M.T. has acted as a consultant and/or adviser to Aadi Bio, Artios Pharma, Arvinas, AstraZeneca, Bayer, BioNTech, Blueprint Medicines, Bristol Myers Squibb, Circle Pharma, Cullinan Oncology, CytomX Therapeutics, Daiichi Sankyo, eFFECTOR, Eisai, Eli Lilly, Genentech/Roche, Gilead, Hengrui USA, Incyte Corp, Jazz Pharmaceuticals, Johnson & Johnson, Menarini/Stemline, Merck, Natera, Novartis, Pfizer (SeaGen), Reveal Genomics, Sanofi, Systimmune, Sumitovant Biopharma, Tango Therapeutics, Umoja Biopharma, Zentalis and Zymeworks; has received institutional research funding from AstraZeneca, Bristol Myers Squibb, Eisai, Exelixis, Genentech/Roche, Gilead, Jazz Pharmaceuticals, Lilly, Merck, NanoString Technologies, Novartis, OncoPep, Pfizer and Seattle Genetics; and travel support from Eli Lilly, Gilead, Jazz Pharmaceuticals, Pfizer and Sanofi. A.P. has acted as an adviser and/or consultant to Amgen, Bristol Myers Squibb, Guardant Health, Lilly, MSD, Novartis, Oncolytics Biotech, Peptomyc, Pfizer, Puma, Reveal Genomics, Roche and SL; has acted as a speaker for Amgen, Bristol Myers Squibb, Daiichi Sankyo, Nanostring Technologies, Novartis, Pfizer and Roche; has received institutional research funding from Astellas, Celgene, Boehringer, Medica Scientia Innovation Research, Nanostring, Novartis, Pfizer, Roche, SL and Sysmex Europa GmbH; holds stocks in Reveal Genomics and SL; and is listed as a co-inventor on patent applications (CT/EP2022/086493, PCT/EP2023/060810, EP23382703 and EP23383369). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks Q. Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waks, A.G., Martínez-Sáez, O., Tarantino, P. et al. Dual HER2 inhibition: mechanisms of synergy, patient selection, and resistance. Nat Rev Clin Oncol (2024). https://doi.org/10.1038/s41571-024-00939-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-024-00939-2

  • Springer Nature Limited

Navigation