Skip to main content

Advertisement

Log in

Targeting chromosomal instability in patients with cancer

  • Review Article
  • Published:

From Nature Reviews Clinical Oncology

View current issue Sign up to alerts

Abstract

Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60–80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.

Key points

  • Chromosomal instability (CIN) has long been recognized as a hallmark of aggressive human malignancies and research over the past two decades has identified several novel therapeutic approaches for patients with chromosomally unstable cancers.

  • CIN drives cancer progression by generating genomic alterations such as chromosomal gains, losses and complex rearrangements. CIN can also drive the development of epigenetic abnormalities and chronic inflammation that facilitate both metastatic dissemination and immune evasion.

  • The development of synthetic lethal approaches in the context of CIN has led to the development of several novel treatment approaches, including KIF18A inhibitors, p53-reactivating agents and PLK4 inhibitors, all of which are currently being tested in clinical trials.

  • A mechanistic understanding of the cancer cell-intrinsic and immune-related vulnerabilities imposed by CIN will create opportunities for the development of a new class of therapies for patients with otherwise difficult-to-treat cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: CIN drives cancer progression.
Fig. 2: Cellular stress response as a CIN-induced vulnerability.
Fig. 3: Synthetic lethality approaches to targeting CIN-high tumours.
Fig. 4: Immune vulnerabilities induced by CIN.
Fig. 5: Clinical biomarkers and therapeutic strategies to detect CIN in tumour samples.

Similar content being viewed by others

References

  1. Orr, B., Godek, K. M. & Compton, D. Aneuploidy. Curr. Biol. 25, R538–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lejeune, J. & Turpin, R. Chromosomal aberrations in man. Am. J. Hum. Genet. 13, 175–184 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Arber, D. A. et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood 140, 1200–1228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Torres, E. M. et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317, 916–924 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Torres, E. M., Springer, M. & Amon, A. No current evidence for widespread dosage compensation in S. cerevisiae. eLife 5, e10996 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Santaguida, S., Vasile, E., White, E. & Amon, A. Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev. 29, 2010–2021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lukow, D. A. et al. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev. Cell 56, 2427–2439.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ippolito, M. R. et al. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy. Dev. Cell 56, 2440–2454.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Schvartzman, J. M., Duijf, P. H., Sotillo, R., Coker, C. & Benezra, R. Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell 19, 701–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575.e11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Agustinus, A. S. et al. Epigenetic dysregulation from chromosomal transit in micronuclei. Nature 619, 176–183 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papathanasiou, S. et al. Heritable transcriptional defects from aberrations of nuclear architecture. Nature 619, 184–192 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beach, R. R. et al. Aneuploidy causes non-genetic individuality. Cell 169, 229–242.e21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martínez-Ruiz, C. et al. Genomic–transcriptomic evolution in lung cancer and metastasis. Nature 616, 543–552 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet 48, 758–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Roylance, R. et al. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol. Biomark. Prev. 20, 2183–2194 (2011).

    Article  Google Scholar 

  18. Stopsack, K. H. et al. Aneuploidy drives lethal progression in prostate cancer. Proc. Natl Acad. Sci. USA 116, 11390–11395 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chibon, F., Lesluyes, T., Valentin, T. & Le Guellec, S. CINSARC signature as a prognostic marker for clinical outcome in sarcomas and beyond. Genes Chromosomes Cancer 58, 124–129 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Frankell, A. M. et al. The evolution of lung cancer and impact of subclonal selection in TRACERx. Nature 616, 525–533 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sourty, B., La Basset, Ë., Garcion, E. & Rousseau, A. DNAR-01. Chromothripsis, one major genetic instability factor in glioblastoma, is rare in IDH-mutant gliomas. Neuro-Oncology 24, vii90 (2022).

    Article  PubMed Central  Google Scholar 

  22. Luebeck, J. et al. Extrachromosomal DNA in the cancerous transformation of Barrett’s oesophagus. Nature 616, 798–805 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bakhoum, S. F. & Compton, D. A. Kinetochores and disease: keeping microtubule dynamics in check! Curr. Opin. Cell Biol. 24, 64–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. de Oliveira Lisboa, M., Brofman, P. R. S., Schmid-Braz, A. T., Rangel-Pozzo, A. & Mai, S. Chromosomal instability in acute myeloid leukemia. Cancers 13, 2655 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee, A. J. et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res 71, 1858–1870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Dijk, E. et al. Chromosomal copy number heterogeneity predicts survival rates across cancers. Nat. Commun. 12, 3188 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Al Bakir, M. et al. The evolution of non-small cell lung cancer metastases in TRACERx. Nature 616, 534–542 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, M. et al. The ATM–p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc. Natl Acad. Sci. USA 107, 14188–14193 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laughney, A. M., Elizalde, S., Genovese, G. & Bakhoum, S. F. Dynamics of tumor heterogeneity derived from clonal karyotypic evolution. Cell Rep. 12, 809–820 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Al-Rawi, D. H. & Bakhoum, S. F. Chromosomal instability as a source of genomic plasticity. Curr. Opin. Genet. Dev. 74, 101913 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bakhoum, S. F. & Cantley, L. C. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174, 1347–1360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thompson, S. L., Bakhoum, S. F. & Compton, D. A. Mechanisms of chromosomal instability. Curr. Biol. 20, R285–295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bronder, D. & Bakhoum, S. F. A. CINful way to overcome addiction: how chromosomal instability enables cancer to overcome its oncogene addiction. EMBO Mol. Med. 12, e12017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sotillo, R., Schvartzman, J. M., Socci, N. D. & Benezra, R. Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464, 436–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harrold, E. et al. Molecular and clinical determinants of acquired resistance and treatment duration for targeted therapies in colorectal cancer. Clin. Cancer Res. 30, 2672–2683 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu, Y. L. et al. Subsequent therapies and survival after immunotherapy in recurrent ovarian cancer. Gynecol. Oncol. 155, 51–57 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaya, A. et al. Molecular signatures of aneuploidy-driven adaptive evolution. Nat. Commun. 11, 588 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Santaguida, S. & Amon, A. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol. 16, 473–485 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Schukken, K. M. & Foijer, F. CIN and aneuploidy: different concepts, different consequences. BioEssays 40, https://doi.org/10.1002/bies.201700147 (2018).

  40. Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat. Genet. 36, 744–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Macedo, J. C. et al. FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence. Nat. Commun. 9, 2834 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Andriani, G. A. et al. Whole chromosome instability induces senescence and promotes SASP. Sci. Rep. 6, 35218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Santaguida, S. et al. Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev. Cell 41, 638–651.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, R. W., Viganò, S., Ben-David, U., Amon, A. & Santaguida, S. Aneuploid senescent cells activate NF-κB to promote their immune clearance by NK cells. EMBO Rep. 22, e52032 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hsu, S.-K. et al. Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int. J. Mol. Sci. 20, 2518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reveil, P. O. Recherches de Physiologie Vegetale. De l’Action des Poisons sur les Plantes (E Martinet, 1865).

  48. Gusev, Y., Kagansky, V. & Dooley, W. C. Long-term dynamics of chromosomal instability in cancer: a transition probability model. Math. Comput. Model. 33, 1253–1273 (2001).

    Article  Google Scholar 

  49. Brennan, C. M. et al. Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells. Genes Dev. 33, 1031–1047 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oromendia, A. B., Dodgson, S. E. & Amon, A. Aneuploidy causes proteotoxic stress in yeast. Genes Dev. 26, 2696–2708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pfau, S. J. & Amon, A. Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep. 13, 515–527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stingele, S. et al. Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol. Syst. Biol. 8, 608 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ohashi, A. et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat. Commun. 6, 7668 (2015).

    Article  PubMed  Google Scholar 

  54. Deshaies, R. J. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 12, 94 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Donnelly, N., Passerini, V., Dürrbaum, M., Stingele, S. & Storchová, Z. HSF1 deficiency and impaired HSP90‐dependent protein folding are hallmarks of aneuploid human cells. EMBO J. 33, 2374–2387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morimoto, R. I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22, 1427–1438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, J. et al. Non-cell-autonomous cancer progression from chromosomal instability. Nature 620, 1080–1088 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, J. et al. Metastasis and immune evasion from extracellular cGAMP hydrolysis. Cancer Discov. 11, 1212–1227 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Advani, V. M. & Ivanov, P. Translational control under stress: reshaping the translatome. BioEssays 41, e1900009 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pan, T. Adaptive translation as a mechanism of stress response and adaptation. Annu. Rev. Genet. 47, 121–137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, Y. S., Shibata, Y., Malhotra, A. & Dutta, A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639–2649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun, C. et al. Roles of tRNA-derived fragments in human cancers. Cancer Lett. 414, 16–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Calvo, V. et al. Discovery of 2-amino-3-amido-5-aryl-pyridines as highly potent, orally bioavailable, and efficacious PERK kinase inhibitors. Bioorg. Med. Chem. Lett. 43, 128058 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Stokes, M. E. et al. PERK inhibition by HC-5404 sensitizes renal cell carcinoma tumor models to antiangiogenic tyrosine kinase inhibitors. Clin. Cancer Res. 29, 4870–4882 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ghosh, R. et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158, 534–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tufanli, O. et al. Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc. Natl Acad. Sci. USA 114, E1395–E1404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gabrail, N. Y. et al. A phase 1/2 trial of ORIN1001, a first-in-class IRE1 inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 39, 3080 (2021).

    Article  Google Scholar 

  68. Rimawi, M. F. et al. Early efficacy evaluation of ORIN1001, a first in class IRE1 alpha inhibitor, in advanced solid tumors. J. Clin. Oncol. 41, https://doi.org/10.1200/JCO.2023.41.16_suppl.1092 (2023).

  69. Wilhelm, T. et al. Mild replication stress causes chromosome mis-segregation via premature centriole disengagement. Nat. Commun. 10, 3585 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gemble, S. et al. Genetic instability from a single S phase after whole-genome duplication. Nature 604, 146–151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peng, C. et al. The error-prone DNA polymerase κ promotes temozolomide resistance in glioblastoma through Rad17-dependent activation of ATR-Chk1 signaling. Cancer Res. 76, 2340–2353 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Patterson, K. et al. Altered RECQL5 expression in urothelial bladder carcinoma increases cellular proliferation and makes RECQL5 helicase activity a novel target for chemotherapy. Oncotarget 7, 76140–76150 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Urban, V., Dobrovolna, J. & Janscak, P. Distinct functions of human RecQ helicases during DNA replication. Biophys. Chem. 225, 20–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Viziteu, E. et al. RECQ1 helicase is involved in replication stress survival and drug resistance in multiple myeloma. Leukemia 31, 2104–2113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Santana-Codina, N. et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat. Commun. 9, 4945 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Li, Q. et al. Rac1 activates non-oxidative pentose phosphate pathway to induce chemoresistance of breast cancer. Nat. Commun. 11, 1456 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ge, X. Q., Jackson, D. A. & Blow, J. J. Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331–3341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee, C. H. et al. Telaglenastat plus everolimus in advanced renal cell carcinoma: a randomized, double-blinded, placebo-controlled, phase II ENTRATA trial. Clin. Cancer Res. 28, 3248–3255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Meric-Bernstam, F. et al. Telaglenastat plus cabozantinib or everolimus for advanced or metastatic renal cell carcinoma: an open-label phase I trial. Clin. Cancer Res. 28, 1540–1548 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173, 581–594.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Addie, R. D. et al. Metabolic reprogramming related to whole-chromosome instability in models for Hürthle cell carcinoma. Sci. Rep. 10, 9578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  84. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    Article  CAS  PubMed  Google Scholar 

  85. Dai, C., Sun, F., Zhu, C. & Hu, X. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability – an implication in aneuploid human tumors. PLoS ONE 8, e63054 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shaukat, Z. et al. Chromosomal instability causes sensitivity to metabolic stress. Oncogene 34, 4044–4055 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Bahreyni, A. et al. Role of adenosine signaling in the pathogenesis of breast cancer. J. Cell Physiol. 233, 1836–1843 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Barfeld, S. J. et al. Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget 6, 12587–12602 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Parker, W. B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev. 109, 2880–2893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Newman, D. L. & Gregory, S. L. Operation between aneuploidy and metabolic changes in driving tumorigenesis. Int. J. Mol. Sci. 20, 4611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brault, V. et al. Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13-App region. PLoS Genet. 11, e1005062 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Clemente-Ruiz, M. et al. Gene dosage imbalance contributes to chromosomal instability-induced tumorigenesis. Dev. Cell 36, 290–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Prasad, S., Gupta, S. C. & Tyagi, A. K. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 387, 95–105 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Ragu, S. et al. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc. Natl Acad. Sci. USA 104, 9747–9752 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Limaye, V. et al. Sphingosine kinase-1 enhances endothelial cell survival through a PECAM-1-dependent activation of PI-3K/Akt and regulation of Bcl-2 family members. Blood 105, 3169–3177 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Zhou, J., Chen, Y., Lang, J.-Y., Lu, J.-J. & Ding, J. Salvicine inactivates β1 integrin and inhibits adhesion of MDA-MB-435 cells to fibronectin via reactive oxygen species signaling. Mol. Cancer Res. 6, 194–204 (2008).

    Article  PubMed  Google Scholar 

  98. Liu, D. et al. Autophagy regulates the survival of cells with chromosomal instability. Oncotarget 7, 63913–63923 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wu, H., Wang, M. C. & Bohmann, D. JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy. Mech. Dev. 126, 624–637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cohen-Sharir, Y. et al. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature 590, 486–491 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Payton, M. et al. Small-molecule inhibition of kinesin KIF18A reveals a mitotic vulnerability enriched in chromosomally unstable cancers. Nat. Cancer 5, 66–84 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Quinton, R. J. et al. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature 590, 492–497 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, R. et al. Discovery of potent, orally active KIF18A inhibitors targeting CIN-high cancer cells. J. Clin. Oncol. 40, e15046 (2022).

    Article  Google Scholar 

  104. Torres, E. M., Williams, B. R. & Amon, A. Aneuploidy: cells losing their balance. Genetics 179, 737–746 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bielski, C. M. & Taylor, B. S. Homing in on genomic instability as a therapeutic target in cancer. Nat. Commun. 12, 3663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morden, C. R. et al. Chromosome instability is prevalent and dynamic in high-grade serous ovarian cancer patient samples. Gynecol. Oncol. 161, 769–778 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Colombo, N. et al. Tolerability of maintenance olaparib in newly diagnosed patients with advanced ovarian cancer and a BRCA mutation in the randomized phase III SOLO1 trial. Gynecol. Oncol. 163, 41–49 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gonzalez-Martin, A. et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 381, 2391–2402 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Wethington, S. L. et al. Combination ATR (ceralasertib) and PARP (olaparib) inhibitor (CAPRI) trial in acquired PARP inhibitor-resistant homologous recombination-deficient ovarian cancer. Clin. Cancer Res. 29, 2800–2807 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Kulkarni, S. et al. Evolving DNA repair synthetic lethality targets in cancer. Biosci. Rep. 42, BSR20221713 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Weaver, B. A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 25, 2677–2681 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Marquis, C. et al. Chromosomally unstable tumor cells specifically require KIF18A for proliferation. Nat. Commun. 12, 1213 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sousa-Pimenta, M. et al. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: paclitaxel, docetaxel, and cabazitaxel. Front. Pharmacol. 14, 1157306 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Komlodi-Pasztor, E., Sackett, D. L. & Fojo, A. T. Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin. Cancer Res. 18, 51–63 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Van den Bossche, J. et al. Spotlight on volasertib: preclinical and clinical evaluation of a promising Plk1 inhibitor. Med. Res. Rev. 36, 749–786 (2016).

    Article  PubMed  Google Scholar 

  116. Benten, D. et al. Aurora kinase inhibitor PHA-739358 suppresses growth of hepatocellular carcinoma in vitro and in a xenograft mouse model. Neoplasia 11, 934–944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Serrano-Del Valle, A. et al. Future prospects for mitosis-targeted antitumor therapies. Biochem. Pharmacol. 190, 114655 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Belmontes, B. et al. Abstract 516: dscovery and preclinical characterization of AMG 650, a first-in-class inhibitor of kinesin KIF18A motor protein with potent activity against chromosomally unstable cancers. Cancer Res. 83, 516 (2023).

    Article  Google Scholar 

  119. Haykal, M. M., Rodrigues-Ferreira, S. & Nahmias, C. Aneuploidy triggers vulnerability to WEE1 inhibition via severe chromosome pulverization. Preprint at bioRxiv https://doi.org/10.1101/2023.09.19.558475 (2023).

    Article  Google Scholar 

  120. Lheureux, S. et al. Adavosertib plus gemcitabine for platinum-resistant or platinum-refractory recurrent ovarian cancer: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 281–292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schutte, T. et al. Clinical development of WEE1 inhibitors in gynecological cancers: a systematic review. Cancer Treat. Rev. 115, 102531 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Liu, J. F. et al. Correlation of cyclin E1 expression and clinical outcomes in a phase 1b dose-escalation study of azenosertib (ZN-c3), a WEE1 inhibitor, in combination with chemotherapy (CT) in patients (pts) with platinum-resistant or refractory (R/R) epithelial ovarian, peritoneal, or fallopian tube cancer (EOC). J. Clin. Oncol. 41, https://doi.org/10.1200/JCO.2023.41.16_suppl.5513 (2023).

  123. Gelderblom, H. et al. Debio 0123-101: A phase 1 trial of Debio 0123 in combination with carboplatin in advanced solid tumors — safety, pharmacokinetic, and preliminary antitumor activity data. J. Clin. Oncol. 41, https://doi.org/10.1200/JCO.2023.41.16_suppl.3012 (2023).

  124. Guiley, K. Z. & Shokat, K. M. A small molecule reacts with the p53 somatic mutant Y220C to rescue wild-type thermal stability. Cancer Discov. 13, 56–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Dumbrava, E. E. et al. First-in-human study of PC14586, a small molecule structural corrector of Y220C mutant p53, in patients with advanced solid tumors harboring a TP53 Y220C mutation. J. Clin. Oncol. 40, 3003 (2022).

    Article  Google Scholar 

  126. Murphy, T. et al. Preclinical characterization and clinical trial of CFI-400945, a polo-like kinase 4 inhibitor, in patients with relapsed/refractory acute myeloid leukemia and higher-risk myelodysplastic neoplasms. Leukemia 38, 502–512 (2024).

    Article  CAS  PubMed  Google Scholar 

  127. Meitinger, F. et al. TRIM37 controls cancer-specific vulnerability to PLK4 inhibition. Nature 585, 440–446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yeow, Z. Y. et al. Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer. Nature 585, 447–452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ippolito, M. R. et al. Increased RNA and protein degradation is required for counteracting transcriptional burden and proteotoxic stress in human aneuploid cells. Preprint at bioRxiv https://doi.org/10.1101/2023.01.27.525826 (2023).

    Article  Google Scholar 

  130. Zerbib, J. et al. Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage. Preprint at bioRxiv https://doi.org/10.1101/2023.01.27.525822 (2023).

    Article  Google Scholar 

  131. Flynn, P. J., Koch, P. D. & Mitchison, T. J. Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. Proc. Natl Acad. Sci. USA 118, e2103585118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bakhoum, S. F. Targeting the undruggable. Science 380, 47 (2023).

    Article  CAS  PubMed  Google Scholar 

  133. Tang, S., Stokasimov, E., Cui, Y. & Pellman, D. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair. Nature 606, 930–936 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell. Biol. 19, 1061–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    Article  PubMed  Google Scholar 

  140. Fitzgerald, K. A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Carozza, J. A. et al. Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity. Nat. Cancer 1, 184–196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li, X., Wang, F., Xu, X., Zhang, J. & Xu, G. The dual role of STAT1 in ovarian cancer: insight into molecular mechanisms and application potentials. Front. Cell Dev. Biol. 9, 636595 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Dunn, G. P. et al. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6, 722–729 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Jin, J. et al. Noncanonical NF-κB pathway controls the production of type I interferons in antiviral innate immunity. Immunity 40, 342–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xu, Y. et al. SN52, a novel nuclear factor-κB inhibitor, blocks nuclear import of RelB:p52 dimer and sensitizes prostate cancer cells to ionizing radiation. Mol. Cancer Ther. 7, 2367–2376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yamada, T. et al. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. Nat. Immunol. 17, 687–694 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Toufektchan, E. et al. Intratumoral TREX1 induction promotes immune evasion by limiting type I interferon. Cancer Immunol. Res. 12, 673–686 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yap, T. A. et al. 27O First-in-class first-in-human phase I trial of RBN-2397 in patients with advanced solid tumors validates PARP7 as a novel anticancer therapeutic target. ESMO Open 8, 100993 (2023).

    Article  Google Scholar 

  150. Gozgit, J. M. et al. PARP7 negatively regulates the type I interferon response in cancer cells and its inhibition triggers antitumor immunity. Cancer Cell 39, 1214–1226.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Francica, B. et al. Abstract 2075: systemic small molecule TREX1 inhibitors to selectively activate STING in the TME of metastatic disease. Cancer Res. 82, 2075–2075 (2022).

    Article  Google Scholar 

  153. Tani, T. et al. TREX1 inactivation unleashes cancer cell STING-interferon signaling and promotes anti-tumor immunity. Cancer Discov. 14, 752–765 (2024).

    Article  CAS  PubMed  Google Scholar 

  154. Zimmerli, D. et al. MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling. Nat. Commun. 13, 6579 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Muthalagu, N. et al. Repression of the type I interferon pathway underlies MYC- and KRAS-dependent evasion of NK and B cells in pancreatic ductal adenocarcinoma. Cancer Discov. 10, 872–887 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li, Q. et al. Therapeutic development by targeting the cGAS-STING pathway in autoimmune disease and cancer. Front Pharm. 12, 779425 (2021).

    Article  CAS  Google Scholar 

  157. Wang, Y. et al. Aneuploidy landscape in precursors of ovarian cancer. Clin. Cancer Res. 30, 600–615 (2023).

    Article  Google Scholar 

  158. Carozza, J. A. et al. ENPP1’s regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating STING signaling. Proc. Natl Acad. Sci. USA 119, e2119189119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cogan, D. & Bakhoum, S. F. Re-awakening innate immune signaling in cancer: the development of highly potent ENPP1 inhibitors. Cell Chem. Biol. 27, 1327–1328 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Solomon, P. E. et al. Discovery of VH domains that allosterically inhibit ENPP1. Nat. Chem. Biol. 20, 30–41 (2024).

    Article  CAS  PubMed  Google Scholar 

  161. Csiki, I. et al. 195TiP A first-in-human, phase I a/b dose escalation and expansion study to evaluate RBS2418 as monotherapy and in combination with pembrolizumab in subjects with advanced unresectable, recurrent or metastatic tumors. Immuno-Oncol. Technol. 16, 100307 (2022).

    Article  Google Scholar 

  162. Thompson, E. A. & Powell, J. D. Inhibition of the adenosine pathway to potentiate cancer immunotherapy: potential for combinatorial approaches. Annu. Rev. Med. 72, 331–348 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, J. & Bakhoum, S. F. The pleiotropic roles of cGAS-STING signaling in the tumor microenvironment. J. Mol. Cell. Biol. 14, mjac019 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hong, C. et al. cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607, 366–373 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Laks, E. et al. Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing. Cell 179, 1207–1221.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Funnell, T. et al. Single-cell genomic variation induced by mutational processes in cancer. Nature 612, 106–115 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhou, H. et al. Plasma cell-free DNA chromosomal instability analysis by low-pass whole-genome sequencing to monitor breast cancer relapse. Breast Cancer Res. Treat. 178, 63–73 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Christodoulou, E. et al. Combined low-pass whole genome and targeted sequencing in liquid biopsies for pediatric solid tumors. NPJ Precis. Oncol. 7, 21 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bethune, G. et al. Impact of the 2013 American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 (HER2) testing of invasive breast carcinoma: a focus on tumours assessed as ‘equivocal’ for HER2 gene amplification by fluorescence in-situ hybridization. Histopathology. 67, 880–887 (2015).

    Article  PubMed  Google Scholar 

  171. Akkari, Y. M. N. et al. Guiding the global evolution of cytogenetic testing for hematologic malignancies. Blood 139, 2273–2284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bakhoum, S. F., Danilova, O. V., Kaur, P., Levy, N. B. & Compton, D. A. Chromosomal instability substantiates poor prognosis in patients with diffuse large B-cell lymphoma. Clin. Cancer Res. 17, 7704–7711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Xu, Z. et al. Deep learning predicts chromosomal instability from histopathology images. IScience 24, 102394 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Negoto, T. et al. Profiling chromosomal-level variations in gastric malignancies. Cancer Sci. 113, 3864–3876 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Matsuura, T. et al. Histological diagnosis of polyploidy discriminates an aggressive subset of hepatocellular carcinomas with poor prognosis. Br. J. Cancer 129, 1251–1260 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Paniagua, I. & Jacobs, J. J. L. Quantification of chromosomal aberrations in mammalian cells. Bio-Protocol 13, e4739 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jones, G. D. et al. A genomic-pathologic annotated risk model to predict recurrence in early-stage lung adenocarcinoma. JAMA Surg. 156, e205601 (2021).

    Article  PubMed  Google Scholar 

  178. Tsang, E. S. et al. Homologous recombination deficiency signatures in gastrointestinal and thoracic cancers correlate with platinum therapy duration. NPJ Precis. Oncol. 7, 31 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Timms, K. M. et al. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. 16, 475 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Vazquez-Garcia, I. et al. Ovarian cancer mutational processes drive site-specific immune evasion. Nature 612, 778–786 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Frezza, A. M. et al. CINSARC in high-risk soft tissue sarcoma patients treated with neoadjuvant chemotherapy: results from the ISG-STS 1001 study. Cancer Med. 12, 1350–1357 (2023).

    Article  CAS  PubMed  Google Scholar 

  183. Lynch, A. R., Arp, N. L., Zhou, A. S., Weaver, B. A. & Burkard, M. E. Quantifying chromosomal instability from intratumoral karyotype diversity using agent-based modeling and Bayesian inference. eLife 11, e69799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Agustinus, A. S. et al. Epigenetic dysregulation from chromosomal transit in micronuclei. Nature 619, 176–183 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Coy, S. et al. 2D and 3D multiplexed subcellular profiling of nuclear instability in human cancer. Preprint at bioRxiv https://doi.org/10.1101/2023.11.07.566063 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Schonhoft, J. D. et al. Morphology-predicted large-scale transition number in circulating tumor cells identifies a chromosomal instability biomarker associated with poor outcome in castration-resistant prostate cancer. Cancer Res. 80, 4892–4903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Freitas, M. O., Gartner, J., Rangel-Pozzo, A. & Mai, S. Genomic instability in circulating tumor cells. Cancers 12, 3001 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chen, Z. et al. Chromosomal instability of circulating tumor DNA reflect therapeutic responses in advanced gastric cancer. Cell Death Dis. 10, 697 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tamayo, N. A. et al. Targeting the mitotic kinesin KIF18A in chromosomally unstable cancers: hit optimization toward an in vivo chemical probe. J. Med. Chem. 65, 4972–4990 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Di Bona, M. & Bakhoum, S. F. Micronuclei and cancer. Cancer Discov. 14, 214–226 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Liu, S. et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51, 705–715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Umbreit, N. T. et al. Mechanisms generating cancer genome complexity from a single cell division error. Science 368, eaba0712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Bakhoum laboratory for discussion and comments. We thank the following sources of funding: for S.F.B., National Institutes of Health/National Cancer Institute (grant nos. P50CA247749, DP5OD026395, R01CA256188, R01CA280572, P30CA008748) Department of Defense Era of Hope Award, Burroughs Wellcome Fund, the Pershing Square Sohn Foundation for Cancer Research, the Josie Robertson Foundation, the Mark Foundation for Cancer Research, and the Starr Cancer Consortium; for D.H.A.-R., Mary Kay Ash Foundation, OCRA Mentored Research Award, 1L32MD017781-01, Conquer Cancer Foundation, and Young Investigator Award.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for this article and made a substantial contribution to discussions of content. D.H.A.-R., E.L., J.L. and S.F.B. wrote the manuscript. All authors reviewed and/or edited the manuscript prior to submission.

Corresponding author

Correspondence to Samuel F. Bakhoum.

Ethics declarations

Competing interests

S.F.B. has acted as a consultant and/or adviser of Meliora Therapeutics and Volastra Therapeutics, is a co-inventor on patents related to some of the research described in this manuscript on agents targeting chromosomal instability and the cGAS–STING pathway in patients with advanced-stage cancer (patent numbers WO2019014246A1, US20210130903A1 and EP4208572A1), and is the scientific co-founder of, holds equity in, and receives compensation from Volastra Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks T. Hirota and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Rawi, D.H., Lettera, E., Li, J. et al. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 21, 645–659 (2024). https://doi.org/10.1038/s41571-024-00923-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-024-00923-w

  • Springer Nature Limited

Navigation