Skip to main content

Advertisement

Log in

The role of biomolecular condensates in protein aggregation

  • Review Article
  • Published:

From Nature Reviews Chemistry

View current issue Sign up to alerts

Abstract

There is an increasing amount of evidence that biomolecular condensates are linked to neurodegenerative diseases associated with protein aggregation, such as Alzheimer’s disease and amyotrophic lateral sclerosis, although the mechanisms underlying this link remain elusive. In this Review, we summarize the possible connections between condensates and protein aggregation. We consider both liquid-to-solid transitions of phase-separated proteins and the partitioning of proteins into host condensates. We distinguish five key factors by which the physical and chemical environment of a condensate can influence protein aggregation, and we discuss their relevance in studies of protein aggregation in the presence of biomolecular condensates: increasing the local concentration of proteins, providing a distinct chemical microenvironment, introducing an interface wherein proteins can localize, changing the energy landscape of aggregation pathways, and the presence of chaperones in condensates. Analysing the role of biomolecular condensates in protein aggregation may be essential for a full understanding of amyloid formation and offers a new perspective that can help in developing new therapeutic strategies for the prevention and treatment of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Proteins involved in neurodegenerative diseases are capable of phase separation both in vitro and in vivo.
Fig. 2: Overview of the links between protein aggregation and condensates.
Fig. 3: Protein aggregation is composed of multiple steps, each of which can be altered by condensates.
Fig. 4: Two-phase simulations demonstrate the effects of various factors involved in two-phase protein aggregation.
Fig. 5: Condensate interfaces can promote the formation of protein aggregates.
Fig. 6: Protein conformations inside condensates can expand and lead to altered aggregation, whereas chaperones can prevent aggregation inside condensates.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10–S17 (2004).

    Article  PubMed  Google Scholar 

  2. Willbold, D., Strodel, B., Schröder, G. F., Hoyer, W. & Heise, H. Amyloid-type protein aggregation and prion-like properties of amyloids. Chem. Rev. 121, 8285–8307 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Dobson, C. M. The amyloid phenomenon and its links with human disease. Cold Spring Harb. Perspect. Biol. 9, a023648 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Emin, D. et al. Small soluble α-synuclein aggregates are the toxic species in Parkinson’s disease. Nat. Commun. 13, 5512 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cascella, R. et al. Probing the origin of the toxicity of oligomeric aggregates of α-synuclein with antibodies. ACS Chem. Biol. 14, 1352–1362 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meisl, G. et al. Uncovering the universality of self-replication in protein aggregation and its link to disease. Sci. Adv. 8, 6831 (2022).

    Article  Google Scholar 

  7. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Alberti, S. & Hyman, A. A. Are aberrant phase transitions a driver of cellular aging? BioEssays 38, 959–968 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vazquez, D. S., Toledo, P. L., Gianotti, A. R. & Ermácora, M. R. Protein conformation and biomolecular condensates. Curr. Res. Struct. Biol. 4, 285–307 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakashima, K. K., Vibhute, M. A. & Spruijt, E. Biomolecular chemistry in liquid phase separated compartments. Front. Mol. Biosci. 6, 21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhattacharya, A. et al. Lipid sponge droplets as programmable synthetic organelles. Proc. Natl Acad. Sci. USA 117, 18206–18215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Jong, B. Coacervation. Proc. R. Acad. Amst. 32, 849–856 (1929).

    Google Scholar 

  13. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Peeples, W. & Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Y., Narlikar, G. J. & Kutateladze, T. G. Enzymatic reactions inside biological condensates. J. Mol. Biol. 433, 166624 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nedelsky, N. B. & Taylor, J. P. Pathological phase transitions in ALS-FTD impair dynamic RNA–protein granules. RNA 28, 97–113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dewey, C. M. et al. TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res. 1462, 16–25 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Törnquist, M. et al. Secondary nucleation in amyloid formation. Chem. Commun. 54, 8667–8684 (2018).

    Article  Google Scholar 

  20. Michaels, T. C. T. et al. Chemical kinetics for bridging molecular mechanisms and macroscopic measurements of amyloid fibril formation. Annu. Rev. Phys. Chem. 69, 273–298 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Sinnige, T. et al. Kinetic analysis reveals that independent nucleation events determine the progression of polyglutamine aggregation in C. elegans. Proc. Natl Acad. Sci. USA 118, e2021888118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ignatova, Z. & Gierasch, L. M. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc. Natl Acad. Sci. USA 101, 523–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Lipiński, W. P. et al. Biomolecular condensates can both accelerate and suppress aggregation of α-synuclein. Sci. Adv. 8, eabq6495 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Knowles, T. P. J., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Farzadfard, A. et al. Thermodynamic characterization of amyloid polymorphism by microfluidic transient incomplete separation. Chem. Sci. 15, 2528–2544 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weber, C., Michaels, T. & Mahadevan, L. Spatial control of irreversible protein aggregation. eLife 8, 42315 (2019).

    Article  Google Scholar 

  27. Khurana, R. et al. Mechanism of thioflavin T binding to amyloid fibrils. J. Struct. Biol. 151, 229–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Wetzel, R. Amyloids, prions & other aggregates. Methods Enzymol. 309, 3–820 (1999).

    Google Scholar 

  29. Hellstrand, E., Boland, B., Walsh, D. M. & Linse, S. Amyloid β-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem. Neurosci. 1, 13–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Zurlo, E. et al. In situ kinetic measurements of α-synuclein aggregation reveal large population of short-lived oligomers. PLoS ONE 16, e0245548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fakhree, M. A. A., Nolten, I. S., Blum, C. & Claessens, M. M. A. E. Different conformational subensembles of the intrinsically disordered protein α-synuclein in cells. J. Phys. Chem. Lett. 9, 1249–1253 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Veldhuis, G., Segers-Nolten, I., Ferlemann, E. & Subramaniam, V. Single-molecule FRET reveals structural heterogeneity of SDS-bound α-synuclein. ChemBioChem 10, 436–439 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Iljina, M. et al. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms. Sci. Rep. 6, 28658 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tittelmeier, J., Druffel-Augustin, S., Alik, A., Melki, R. & Nussbaum-Krammer, C. Dissecting aggregation and seeding dynamics of α-Syn polymorphs using the phasor approach to FLIM. Commun. Biol. 5, 1345 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ray, S. et al. Mass photometric detection and quantification of nanoscale α-synuclein phase separation. Nat. Chem. 15, 1306–1316 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Murakami, T. et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, Y., Protter, D. S. W., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mathieu, C., Pappu, R. V. & Taylor, J. P. Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science 370, 55–60 (2020).

    Article  Google Scholar 

  39. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Conicella, A. E., Zerze, G. H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang, H. et al. PARIS undergoes liquid–liquid phase separation and poly(ADP‐ribose)‐mediated solidification. EMBO Rep. 24, e56166 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Gruijs da Silva, L. A. et al. Disease‐linked TDP‐43 hyperphosphorylation suppresses TDP‐43 condensation and aggregation. EMBO J. 41, e108443 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tomaszewski, A. et al. Solid-to-liquid phase transition in the dissolution of cytosolic misfolded-protein aggregates. iScience 26, 108334 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Linsenmeier, M. et al. The interface of condensates of the hnRNPA1 low-complexity domain promotes formation of amyloid fibrils. Nat. Chem. 15, 1340–1349 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wegmann, S. et al. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 37, e98049 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Boyko, S. et al. Liquid-liquid phase separation of tau protein: the crucial role of electrostatic interactions. J. Biol. Chem. 294, 11054–11059 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wen, J. et al. Conformational expansion of tau in condensates promotes irreversible aggregation. J. Am. Chem. Soc. 143, 13056–13064 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Boyko, S., Surewicz, K. & Surewicz, W. K. Regulatory mechanisms of tau protein fibrillation under the conditions of liquid–liquid phase separation. Proc. Natl Acad. Sci. USA 117, 31882–31890 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ray, S. et al. Synuclein aggregation nucleates through liquid–liquid phase separation. Nat. Chem. 12, 705–716 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Ray, S. et al. Spatiotemporal solidification of α-synuclein inside the liquid droplets. Preprint at https://doi.org/10.1101/2021.10.20.465113 (2021).

  52. Sawner, A. S. et al. Modulating α-synuclein liquid-liquid phase separation. Biochem 60, 3676–3696 (2021).

    Article  CAS  Google Scholar 

  53. Hardenberg, M. C. et al. Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies. J. Mol. Cell Biol. 13, 282–294 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Küffner, A. M. et al. Sequestration within biomolecular condensates inhibits Aβ-42 amyloid formation. Chem. Sci. 12, 4373–4382 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Choi, C. H., Lee, D. S. W., Sanders, D. W. & Brangwynne, C. P. Condensate interfaces can accelerate protein aggregation. Biophys. J. 123, 1404–1413 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shen, Y. et al. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nat. Nanotechnol. 15, 841–847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Onuchic, P. L., Milin, A. N., Alshareedah, I., Deniz, A. A. & Banerjee, P. R. Divalent cations can control a switch-like behavior in heterotypic and homotypic RNA coacervates. Sci. Rep. 9, 12161 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. McCall, P. M. et al. Partitioning and enhanced self-assembly of actin in polypeptide coacervates. Biophys. J. 114, 1636–1645 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Samanta, N. et al. Sequestration of proteins in stress granules relies on the in-cell but not the in vitro folding stability. J. Am. Chem. Soc. 143, 19909–19918 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Frottin, F. et al. The nucleolus functions as a phase-separated protein quality control compartment. Science 365, 342–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Bauermann, J., Laha, S., McCall, P. M., Jülicher, F. & Weber, C. A. Chemical kinetics and mass action in coexisting phases. J. Am. Chem. Soc. 144, 19294–19304 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Michaels, T. C. T., Mahadevan, L. & Weber, C. A. Enhanced potency of aggregation inhibitors mediated by liquid condensates. Phys. Rev. Res. 4, 043173 (2022).

    Article  CAS  Google Scholar 

  65. Stender, E. G. P. et al. Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid-liquid phase separation. Nat. Commun. 12, 7289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Taylor, N. O., Wei, M. T., Stone, H. A. & Brangwynne, C. P. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 117, 1285–1300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yewdall, N. A., André, A. A. M., Lu, T. & Spruijt, E. Coacervates as models of membraneless organelles. Curr. Opin. Colloid Interface Sci. 52, 101416 (2021).

    Article  CAS  Google Scholar 

  68. Pönisch, W., Michaels, T. C. T. & Weber, C. A. Aggregation controlled by condensate rheology. Biophys. J. 122, 197–214 (2023).

    Article  PubMed  Google Scholar 

  69. Ahmad, B., Chen, Y. & Lapidus, L. J. Aggregation of α-synuclein is kinetically controlled by intramolecular diffusion. Proc. Natl Acad. Sci. USA 109, 2336–2341 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wei, M. T. et al. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat. Chem. 9, 1118–1125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, H., Kelley, F. M., Milovanovic, D., Schuster, B. S. & Shi, Z. Surface tension and viscosity of protein condensates quantified by micropipette aspiration. Biophys. Rep. 1, 100011 (2021).

    CAS  Google Scholar 

  72. Li, J., Uversky, V. N. & Fink, A. L. Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human α-synuclein. Biochem 40, 11604–11613 (2001).

    Article  CAS  Google Scholar 

  73. Murthy, A. C. et al. Molecular interactions underlying liquid–liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smisdom, N. et al. Fluorescence recovery after photobleaching on the confocal laser-scanning microscope: generalized model without restriction on the size of the photobleached disk. J. Biomed. Opt. 16, 046021 (2011).

    Article  PubMed  Google Scholar 

  75. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jawerth, L. M. et al. Salt-dependent rheology and surface tension of protein condensates using optical traps. Phys. Rev. Lett. 121, 258101 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Zhou, H. X. Determination of condensate material properties from droplet deformation. J. Phys. Chem. B 124, 8372–8379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kalwarczyk, T. et al. Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model. Adv. Colloid Interface Sci. 223, 55–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Bubak, G. et al. Quantifying nanoscale viscosity and structures of living cells nucleus from mobility measurements. J. Phys. Chem. Lett. 12, 294–301 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Munishkina, L. A., Cooper, E. M., Uversky, V. N. & Fink, A. L. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J. Mol. Recognit. 17, 456–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Vagenende, V., Yap, M. G. S. & Trout, B. L. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochem 48, 11084–11096 (2009).

    Article  CAS  Google Scholar 

  82. Roussel, M. R. Foundations of Chemical Kinetics (IOP Publishing, 2023).

  83. Abyzov, A., Blackledge, M. & Zweckstetter, M. Conformational dynamics of intrinsically disordered proteins regulate biomolecular condensate chemistry. Chem. Rev. 122, 6719–6748 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

  85. Garaizar, A. et al. Aging can transform single-component protein condensates into multiphase architectures. Proc. Natl Acad. Sci. USA 119, e2119800119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Breydo, L. et al. The crowd you’re in with: effects of different types of crowding agents on protein aggregation. Biochim. Biophys. Acta Proteins Proteom. 1844, 346–357 (2014).

    Article  CAS  Google Scholar 

  87. Schreck, J. S., Bridstrup, J. & Yuan, J. M. Investigating the effects of molecular crowding on the kinetics of protein aggregation. J. Phys. Chem. B 124, 9829–9839 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Grigolato, F. & Arosio, P. The role of surfaces on amyloid formation. Biophys. Chem. 270, 106533 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Galvagnion, C. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11, 229–234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marie, G. et al. Acceleration of α-synuclein aggregation by exosomes. J. Biol. Chem. 290, 2969–2982 (2015).

    Article  Google Scholar 

  91. Morinaga, A. et al. Critical role of interfaces and agitation on the nucleation of Aβ amyloid fibrils at low concentrations of Aβ monomers. Biochim. Biophys. Acta Proteins Proteom. 1804, 986–995 (2010).

    Article  CAS  Google Scholar 

  92. Gray, J. J. The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 14, 110–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Zapadka, K. L., Becher, F. J., Gomes dos Santos, A. L. & Jackson, S. E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 7, 20170030 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Camino, J. D., Gracia, P. & Cremades, N. The role of water in the primary nucleation of protein amyloid aggregation. Biophys. Chem. 269, 106520 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Folkmann, A. W., Putnam, A., Lee, C. F. & Seydoux, G. Regulation of biomolecular condensates by interfacial protein clusters. Science 373, 1218–1224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Garcia-Jove Navarro, M. et al. RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates. Nat. Commun. 10, 3230 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Welsh, T. J. et al. Surface electrostatics govern the emulsion stability of biomolecular condensates. Nano Lett. 22, 612–621 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Vabulas, R. M., Raychaudhuri, S., Hayer-Hartl, M. & Hartl, F. U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol. 2, a004390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chirita, C. N., Congdon, E. E., Yin, H. & Kuret, J. Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry 44, 5862–5872 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Menon, S. & Mondal, J. Conformational plasticity in α-synuclein and how crowded environment modulates it. J. Phys. Chem. B 127, 4032–4049 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Farag, M. et al. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations. Nat. Commun. 13, 7722 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ohgita, T. et al. Intramolecular interaction kinetically regulates fibril formation by human and mouse α-synuclein. Sci. Rep. 13, 10885 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kumari, P. et al. Structural insights into α-synuclein monomer–fibril interactions. Proc. Natl Acad. Sci. USA 118, e2012171118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Guseva, S. et al. Liquid-liquid phase separation modifies the dynamic properties of intrinsically disordered proteins. J. Am. Chem. Soc. 145, 10548–10563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhao, M. et al. Partitioning of small molecules in hydrogen-bonding complex coacervates of poly(acrylic acid) and poly(ethylene glycol) or pluronic block copolymer. Macromolecules 50, 3818–3830 (2017).

    Article  CAS  Google Scholar 

  106. Huang, S. et al. Effect of small molecules on the phase behavior and coacervation of aqueous solutions of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrene sulfonate). J. Colloid Interface Sci. 518, 216–224 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Lipiński, W. P. et al. Fibrils e merging from droplets: molecular guiding principles behind phase transitions of a short peptide-based condensate studied by solid-state NMR. Chem. Eur. J. 29, e202301159 (2023).

    Article  PubMed  Google Scholar 

  108. Leblanc, S. J., Kulkarni, P. & Weninger, K. R. Single molecule FRET: a powerful tool to study intrinsically disordered proteins. Biomolecules 8, 140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Holmstrom, E. D. et al. Accurate transfer efficiencies, distance distributions, and ensembles of unfolded and intrinsically disordered proteins from single-molecule FRET. Methods Enzymol. 611, 287–325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bordignon, E. & Polyhach, Y. EPR techniques to probe insertion and conformation of spin-labeled proteins in lipid bilayers. Meth. Mol. Biol. 974, 329–355 (2013).

    Article  CAS  Google Scholar 

  111. Maltseva, D. et al. Fibril formation and ordering of disordered FUS LC driven by hydrophobic interactions. Nat. Chem. 15, 1146–1154 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dyson, H. J. & Wright, P. E. Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv. Protein Chem. 62, 311–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 14, 630–642 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hatters, D. M., Lindner, R. A., Carver, J. A. & Howlett, G. J. The molecular chaperone, α-crystallin, inhibits amyloid formation by apolipoprotein C-II. J. Biol. Chem. 276, 33755–33761 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Webster, J. M., Darling, A. L., Uversky, V. N. & Blair, L. J. Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front. Pharmacol. 10, 1047 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bruinsma, I. B. et al. Inhibition of α-synuclein aggregation by small heat shock proteins. Proteins 79, 2956–2967 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Wentink, A. S. et al. Molecular dissection of amyloid disaggregation by human HSP70. Nature 587, 483–488 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Li, Y. et al. Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. iScience 25, 104356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shammas, S. L. et al. Binding of the molecular chaperone αb-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys. J. 101, 1681–1689 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shorter, J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS ONE 6, e26319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Daturpalli, S., Waudby, C. A., Meehan, S. & Jackson, S. E. Hsp90 inhibits α-synuclein aggregation by interacting with soluble oligomers. J. Mol. Biol. 425, 4614–4628 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, Z. Y. et al. TRIM11 protects against tauopathies and is down-regulated in Alzheimer’s disease. Science 381, eadd6696 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, Z. et al. Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nat. Struct. Mol. Biol. 27, 363–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Gu, J. et al. Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proc. Natl Acad. Sci. USA 117, 31123–31133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hiller, S. Chaperone-bound clients: the importance of being dynamic. Trends Biochem. Sci. 44, 517–527 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Zbinden, A., Pérez-Berlanga, M., De Rossi, P. & Polymenidou, M. Phase separation and neurodegenerative diseases: a disturbance in the force. Dev. Cell 55, 45–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Mateju, D. et al. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 36, 1669–1687 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported financially by a Vidi grant from the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and editing of the article.

Corresponding author

Correspondence to Evan Spruijt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Alexander Buell, Sara Linse and Soumik Ray, and the other anonymous referee(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visser, B.S., Lipiński, W.P. & Spruijt, E. The role of biomolecular condensates in protein aggregation. Nat Rev Chem 8, 686–700 (2024). https://doi.org/10.1038/s41570-024-00635-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00635-w

  • Springer Nature Limited

Navigation