Skip to main content
Log in

Universal Kibble–Zurek scaling in an atomic Fermi superfluid

  • Article
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

The Kibble–Zurek mechanism is a theoretical framework that describes the formation and scaling of topological defects in symmetry-breaking phase transitions. It was originally conceptualized for superfluid helium. The theory predicts that the number of quantum vortices should scale as a power law with the rate at which the system passes through the lambda transition, but demonstrating this effect has been elusive in experiments using superfluid systems. Here, we report the observation of Kibble–Zurek scaling in a homogeneous, strongly interacting Fermi gas undergoing a superfluid phase transition. We investigate the superfluid transition using temperature and interaction strength as two distinct control parameters. The microscopic physics of condensate formation is markedly different for the two quench parameters, as shown by the two orders of magnitude difference in the condensate formation timescale. However, regardless of the thermodynamic direction in which the system passes through a phase transition, the Kibble–Zurek exponent is identically observed to be about 0.68, in good agreement with theoretical predictions. This work experimentally demonstrates the theoretical proposal laid out for liquid helium, which is in the same universality class as strongly interacting Fermi gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Spontaneous defect formation in a homogeneous atomic Fermi superfluid.
Fig. 2: Temperature quench.
Fig. 3: Interaction quench.
Fig. 4: Condensate fraction versus quench time.
Fig. 5: Universal KZ scaling.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other supporting data are available from the corresponding author upon request.

References

  1. Kibble, T. W. Topology of cosmic domains and strings. J. Phys. A: Math. Gen. 9, 1387 (1976).

    Article  ADS  Google Scholar 

  2. Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985).

    Article  ADS  Google Scholar 

  3. Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).

    Article  ADS  Google Scholar 

  4. Kardar, M. Statistical Physics of Fields (Cambridge Univ. Press, 2007).

  5. Zurek, W. H. Experimental cosmology: strings in superfluid helium. In Proc. Santa Fe Meeting of the Division of Particles and Fields of the American Physical Society (eds Goldman, T. & Nieto, M. M.) 479 (World Scientific, 1985).

  6. Leggett, A. J. Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford Univ. Press, 2006).

  7. Goldner, L. S., Mulders, N. & Ahlers, G. Second sound very near Tλ. J. Low Temp. Phys. 93, 131–182 (1993).

    Article  ADS  Google Scholar 

  8. Donner, T. et al. Critical behavior of a trapped interacting Bose gas. Science 315, 1556–1558 (2007).

    Article  ADS  Google Scholar 

  9. Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science 347, 167–170 (2015).

    Article  ADS  Google Scholar 

  10. Hendry, P., Lawson, N. S., Lee, R., McClintock, P. V. & Williams, C. Generation of defects in superfluid 4He as an analogue of the formation of cosmic strings. Nature 368, 315–317 (1994).

    Article  ADS  Google Scholar 

  11. Bäuerle, C., Bunkov, Y. M., Fisher, S. N., Godfrin, H. & Pickett, G. R. Laboratory simulation of cosmic string formation in the early Universe using superfluid 3He. Nature 382, 332–334 (1996).

    Article  ADS  Google Scholar 

  12. Ruutu, V. M. H. et al. Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation. Nature 382, 334–336 (1996).

    Article  ADS  Google Scholar 

  13. Dodd, M. E., Hendry, P. C., Lawson, N. S., McClintock, P. V. E. & Williams, C. D. H. Nonappearance of vortices in fast mechanical expansions of liquid 4He through the lambda transition. Phys. Rev. Lett. 81, 3703–3706 (1998).

    Article  ADS  Google Scholar 

  14. Weiler, C. N. et al. Spontaneous vortices in the formation of Bose–Einstein condensates. Nature 455, 948–951 (2008).

    Article  ADS  Google Scholar 

  15. Lamporesi, G., Donadello, S., Serafini, S., Dalfovo, F. & Ferrari, G. Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate. Nat. Phys. 9, 656–660 (2013).

    Article  Google Scholar 

  16. Donadello, S. et al. Creation and counting of defects in a temperature-quenched Bose–Einstein condensate. Phys. Rev. A 94, 023628 (2016).

    Article  ADS  Google Scholar 

  17. Chomaz, L. et al. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas. Nat. Commun. 6, 6162 (2015).

    Article  ADS  Google Scholar 

  18. Ko, B., Park, J. W. & Shin, Y. Kibble–Zurek universality in a strongly interacting Fermi superfluid. Nat. Phys. 15, 1227–1231 (2019).

    Article  Google Scholar 

  19. Liu, X.-P. et al. Dynamic formation of quasicondensate and spontaneous vortices in a strongly interacting Fermi gas. Phys. Rev. Res. 3, 043115 (2021).

    Article  ADS  Google Scholar 

  20. Rabga, T., Lee, Y., Bae, D., Kim, M. & Shin, Y. Variations of the Kibble–Zurek scaling exponents of trapped Bose gases. Phys. Rev. A 108, 023315 (2023).

    Article  ADS  Google Scholar 

  21. Karra, G. & Rivers, R. J. Reexamination of quenches in 4He (and 3He). Phys. Rev. Lett. 81, 3707–3710 (1998).

    Article  ADS  Google Scholar 

  22. Del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

    Article  Google Scholar 

  23. Beugnon, J. & Navon, N. Exploring the Kibble–Zurek mechanism with homogeneous Bose gases. J. Phys. B: At. Mol. Opt. Phys. 50, 022002 (2017).

    Article  ADS  Google Scholar 

  24. Del Campo, A., Retzker, A. & Plenio, M. B. The inhomogeneous Kibble–Zurek mechanism: vortex nucleation during Bose–Einstein condensation. New J. Phys. 13, 083022 (2011).

    Article  Google Scholar 

  25. Goo, J., Lim, Y. & Shin, Y. Defect saturation in a rapidly quenched Bose gas. Phys. Rev. Lett. 127, 115701 (2021).

    Article  ADS  Google Scholar 

  26. Chesler, P. M., García-García, A. M. & Liu, H. Defect formation beyond Kibble–Zurek mechanism and holography. Phys. Rev. X 5, 021015 (2015).

    Google Scholar 

  27. Goo, J. et al. Universal early coarsening of quenched Bose gases. Phys. Rev. Lett. 128, 135701 (2022).

    Article  ADS  Google Scholar 

  28. Halperin, B. I., Hohenberg, P. C. & Siggia, E. D. Renormalization-group calculations of divergent transport coefficients at critical points. Phys. Rev. Lett. 32, 1289–1292 (1974).

    Article  ADS  Google Scholar 

  29. Halperin, B. I., Hohenberg, P. C. & Siggia, E. D. Renormalization-group treatment of the critical dynamics of superfluid helium, the isotropic antiferromagnet, and the easy-plane ferromagnet. Phys. Rev. B 13, 1299–1328 (1976).

    Article  ADS  Google Scholar 

  30. Li, X. et al. Second sound attenuation near quantum criticality. Science 375, 528–533 (2022).

    Article  ADS  Google Scholar 

  31. Yan, Z. et al. Thermography of the superfluid transition in a strongly interacting Fermi gas. Science 383, 629–633 (2024).

    Article  ADS  Google Scholar 

  32. Warner, G. L. & Leggett, A. J. Quench dynamics of a superfluid Fermi gas. Phys. Rev. B 71, 134514 (2005).

    Article  ADS  Google Scholar 

  33. Dyke, P. et al. Dynamics of a Fermi gas quenched to unitarity. Phys. Rev. Lett. 127, 100405 (2021).

    Article  ADS  Google Scholar 

  34. Rabga, T., Lee, Y. & Shin, Y.-I. Probing early phase coarsening in a rapidly quenched Bose gas using off-resonant matter-wave interferometry. Preprint at arxiv.org/abs/2402.03742 (2024).

  35. Samajdar, R. & Huse, D. A. Quantum and classical coarsening and their interplay with the Kibble–Zurek mechanism. Preprint at arxiv.org/abs/2401.15144 (2024).

  36. Griffiths, R. B. Thermodynamics near the two-fluid critical mixing point in He3-He4. Phys. Rev. Lett. 24, 715–717 (1970).

    Article  ADS  Google Scholar 

  37. Siggia, E. D. & Nelson, D. R. Tricritical dynamics near four dimensions. Phys. Rev. B 15, 1427–1444 (1977).

    Article  ADS  Google Scholar 

  38. Folk, R. & Moser, G. Tricritical dynamics at the demixing-λ-transition in 3He-4He mixtures. J. Low Temp. Phys. 150, 689–709 (2008).

    Article  ADS  Google Scholar 

  39. Allman, D. G., Sabharwal, P. & Wright, K. C. Quench-induced spontaneous currents in rings of ultracold fermionic atoms. Phys. Rev. A 109, 053320 (2024).

    Article  ADS  Google Scholar 

  40. Haussmann, R., Rantner, W., Cerrito, S. & Zwerger, W. Thermodynamics of the BCS–BEC crossover. Phys. Rev. A 75, 023610 (2007).

    Article  ADS  Google Scholar 

  41. Carr, L. D., Shlyapnikov, G. V. & Castin, Y. Achieving a BCS transition in an atomic Fermi gas. Phys. Rev. Lett. 92, 150404 (2004).

    Article  ADS  Google Scholar 

  42. Park, J. W., Ko, B. & Shin, Y. Critical vortex shedding in a strongly interacting fermionic superfluid. Phys. Rev. Lett. 121, 225301 (2018).

    Article  ADS  Google Scholar 

  43. Wolswijk, L. et al. Measurement of the order parameter and its spatial fluctuations across Bose–Einstein condensation. Phys. Rev. A 105, 033316 (2022).

    Article  ADS  Google Scholar 

  44. Zürn, G. et al. Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved rf spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110, 135301 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E.-G. Moon for helpful discussions and J. W. Park for helpful discussions and a critical reading of the manuscript. This work was supported by the National Research Foundation of Korea (Grants Nos. NRF-2023R1A2C3006565 and NRF-2023M3K5A1094811) and the Institute for Basic Science in Korea (Grant No. IBS-R009-D1). K.L. acknowledges support from the National Research Foundation of Korea (Grant No. NRF-2019H1A2A1074494).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the work presented in this manuscript. K.L. and Y.S. conceived the idea. K.L., S.K. and T.K. maintained and developed the experimental apparatus. K.L. and T.K. collected the data. K.L. analysed the data. K.L. and Y.S. wrote the original draft. Y.S. supervised the experiment.

Corresponding author

Correspondence to Y. Shin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Condensate fraction growth.

Condensate fraction (η) as a function of the hold time (th) after quench. The solid (open) circles show the growth of condensate fraction for a temperature quench with tq = 63 ms (tq = 50 ms) at Uf = 0.3Uc (Uf = 0.5Uc). The solid and open circles share an identical quench rate for passing through the critical point. The diamonds indicate the condensate fraction growth for an interaction quench with tq = 2 ms. The inset displays the initial growth rates (γg) calculated in the shaded region of the main figure. Each data point is an average of at least 5 experimental realizations and its error bar denotes the standard deviation of the measurements.

Source data

Extended Data Fig. 2 Inverse s-wave scattering length versus Feshbach magnetic field.

The solid line depicts the experimental data of the inverse s-wave scattering length (a−1) as a function of the magnetic field (B) with respect to Bf = 830 G44. Here, a0 denotes the Bohr radius. The shaded region represents the quench range of the magnetic field in our experiment. The dashed line indicates the point of continuous phase transition.

Extended Data Fig. 3 Determination of the KZ scaling region.

The exponent αKZ was determined from a power-law fit to the data points for tqtL. Measurement results of αKZ and the \({\chi }_{\nu }^{2}\) statistics as functions of the lower bound tL of the fitting region (a) for the temperature quench with Uf = 0.3Uc and (b) for the interaction quench. The error bars for αKZ denote the standard deviation of the scaling exponent obtained from the power-law fit. The dashed line is a guide for the eye with αKZ = 0.67. The shaded region indicates the KZ scaling region.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and discussion.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Kim, S., Kim, T. et al. Universal Kibble–Zurek scaling in an atomic Fermi superfluid. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02592-z

  • Springer Nature Limited

This article is cited by

Navigation